

SCHEME OF TEACHING AND EVALUATION B. Tech (All Branches except Biotech and CSBS) w.e.f. ACADEMIC YEAR 2023-24

SEMESTER: I/II

COURSE MOI	DULE: PHYSICS/ CHEMISTRY GROUP				EACH URS/\	ING WEEK	WEIGHTAGE: EVALUATION			
	COURSE		Credits	L	Т	Р	CIE	MSE	SEE	Total
Category of Courses	Title	Code								
DSC	Engineering Mathematics-I	TMA101	4	3	1	-	25	25	50	100
DSC	Fundamental of Computer & Introduction to Programming	TCS101	3	3	-	-	25	25	50	100
DSC	Engineering Physics	TPH101/201	3	3	-	-	25	25	50	100
DSC	Basic Electrical Engineering	TEE101/201	2	2	-	-	25	25	50	100
DSC	Basic Civil Engineering	TCE101/201	2	2	-	-	25	25	50	100
AEC	Professional Communication	THU101	2	2	-	-	25	25	50	100
DSC	Computer Lab- I	PCS151	2	-	-	4	25	25	50	100
DSC	Physics Lab	PPH151/251	1	-	-	2	25	25	50	100
DSC	Basic Electrical Engineering Lab.	PEE151/251	1	-	-	2	25	25	50	100
SEC	Workshop and Manufacturing Practices	PME151/251	3	1	-	4	25	25	50	100
VAC	General Proficiency-L/NCC/Yoga/ Sports		1	-	-	2	-	-	100	100
VAC	Healthy Living & Fitness	THF101/201	0	1	-	-	-	-	100	100
		Total	24	17	1	14	250	250	700	1200

SEMESTER: I/II

	COURSE MODULE: CHEMISTRY /PHYSICS GROUP					ING WEEK	WEIGHTAGE: EVALUATION			
	COURSE			L	Т	Р	CIE	MSE	SEE	Total
Category of Courses	Title	Code	Credits							
DSC	Engineering Mathematics-II	TMA201	4	3	1	-	25	25	50	100
DSC	Programming for Problem Solving	TCS201	3	3	-	-	25	25	50	100
DSC	Engineering Chemistry	TCH101/201	3	3	-	-	25	25	50	100
DSC	Basic Electronics Engineering	TEC101/201	3	3	-	-	25	25	50	100
AEC	Advanced Professional Communication	THU201	2	2	-	-	25	25	50	100
DSC	Computer Lab –II	PCS151/251	2	-	-	4	25	25	50	100
DSC	Chemistry Lab	PCH151/251	1	-	-	2	25	25	50	100
DSC	Basic Electronics Engineering Lab.	PEC151/251	1	-	-	2	25	25	50	100
SEC	Engg. Graphics and Design Lab.	PME153/253	3	1	-	4	25	25	50	100
VAC	General Proficiency-II /NCC/Yoga/ Sports /Cultural	GP201	1	-	-	2	-	-	100	100
VAC	Environmental Science	TEV101/201	0	2	-	-	-	-	100	100
		Total	23	17	1	14	225	225	650	1100

Bell Road,Clement Town Dehradun-248002 Uttarakhand Ph. : 0135-2644183, 2642799, Fax : 0135-2644025 www.geu.ac.in

SCHEME OF TEACHING AND EVALUATION B. Tech (Biotech) w.e.f. ACADEMIC YEAR 2023-24

	COURSE MODULE: CHEMISTRY GROU	Р			ACHII JRS/W		WEIGHTAGE: EVALUATION			ATION
	COURSE		Credits	L	Т	Ρ	CIE	MSE	SEE	Total
Category of Courses	Title	Code								
DSC	Fundamental of Computer & Introduction to Programming	TCS101	3	3	-	-	25	25	50	100
DSC	Engineering Chemistry	TCH101	3	3	-	-	25	25	50	100
DSC	Basic Electrical & Electronics Engineering	EEC101	4	3	1	-	25	25	50	100
AEC	Professional Communication	THU101	2	2	-	-	25	25	50	100
DSC	Computer Lab- I	PCS151	2	-	-	4	25	25	50	100
DSC	Chemistry Lab	PCH151	1	-	-	2	25	25	50	100
DSC	Basic Electrical & Electronics Engineering Lab.	EEC151	1	-	-	2	25	25	50	100
SEC	Engg. Graphics and Design Lab.	PME153	3	1	-	4	25	25	50	100
SEC	Fundamental of Medical Biotechnology	TBT101	3	2	1	-	25	25	50	100
VAC	General Proficiency-I /NCC/Yoga/ Sports /Cultural	GP101	1	-	-	2	-	-	100	100
VAC	Environmental Science	TEV101	0	2	-	-	-	-	100	100
		Total	23	14	1	14	225	225	650	1100

SEMESTER II

SEMESTER: I

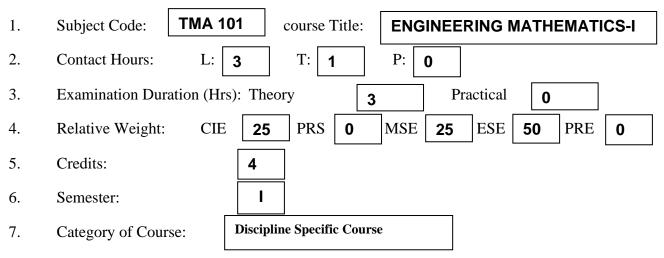
	COURSE MODULE: PHYSICS GROUP			-	EACHIN URS/W		WEIGHTAGE : EVALUATION			
	COURSE									
Category of Courses	Title	Code	Credits	L	т	Р	CIE	MSE	SEE	Total
DSC	Programming for Problem Solving	TCS201	3	3	-	-	25	25	100	100
DSC	Engineering Physics	TPH201	3	3	-	-	25	25	50	100
DSC	Engineering Mathematics	TMA202	4	3	1	-	25	25	50	100
DSC	Advanced Organic Chemistry	TCH202	3	3	-	-	25	25	50	100
AEC	Advanced Professional Communication	THU201	2	2	-	-	25	25	50	100
SEC	Entrepreneurial Biotechnology	TBT201	3	2	1	-	25	25	50	100
DSC	Computer Lab –II	PCS251	2	-	-	4	25	25	50	100
DSC	Physics Lab	PPH251	1	-	-	2	25	25	50	100
VAC	General Proficiency-II /NCC/Yoga/ Sports /Cultural	GP201	1	-	-	2	-	-	100	100
VAC	VAC Healthy Living & Fitness THF201		0	1	-	-	-	-	50	100
		Total	22	17	2	8	200	200	600	1000

SCHEME OF TEACHING AND EVALUATION B. Tech (CSBS) w.e.f. ACADEMIC YEAR 2023-24

SEMESTER: I

COURSE MOI	DULE: PHYSICS GROUP			TEACHING HOURS/WEEK			WEIGHTAGE: EVALUATION			
	COURSE		Credits	L	Т	Р	CIE	MSE	SEE	Total
Category of Courses	Title	Code								
DSC	Discrete Mathematics	TTC101	4	3	1	-	25	25	50	100
DSC	Introductory Topics in Statistics, Probability and Calculus		3	3	-	-	25	25	50	100
DSC	DSC Fundamentals of Computer and TCS Introduction to Programming		3	3	-	-	25	25	50	100
DSC	DSC Principles of Electrical Engineering TTC104		2	2	-	-	25	25	50	100
DSC	Physics for Computing Science	TTC105	2	2	-	-	25	25	50	100
AEC	Business Communication & Value Science I	TTC106	2	1	-	2	25	25	50	100
DSC	Computer Lab- I	PCS151	2	-	-	4	25	25	50	100
DSC	Physics Lab	PTC105	1	-	-	2	25	25	50	100
DSC	Electrical Engineering Lab.	PTC104	1	-	-	2	25	25	50	100
SEC	Workshop and Manufacturing Practices	PME151	3	1	-	4	25	25	50	100
VAC	General Proficiency-L/NCC/Yoga/ Sports		1	-	-	2	-	-	100	100
VAC	Healthy Living & Fitness	THF101	0	1	-	-	-	-	100	100
	Induction Program	NTC101	0	-	-	-	-	-	-	-
		Total	24	17	1	16	250	250	700	1200

SEMESTER: II


	COURSE MODULE: CHEMISTRY GROU	JP			EACH JRS/\	ING WEEK	WEIGHTAGE: EVALUATION					
	COURSE			L	Т	Р	CIE	MSE	SEE Total			
Category of Courses	Title	Code	Credits									
DSC	Linear Algebra	TTC201	4	3	1	-	25	25	50	100		
DSC	Statistical Methods	TTC202	4	3	1	-	25	25	50	100		
DSC	Fundamentals of Economics	TTC203	2	2	-	-	25	25	50	100		
DSC	Programming for Problem Solving	TCS201	3	3	-	-	25	25	50	100		
DSC	Principles of Electronics	TTC204	2	2	1	-	25	25	50	100		
AEC	Business Communication & Value Science II	TTC205	2	2	-	-	25	25	50	100		
DSC	Computer Lab –II	PCS251	2	-	-	4	25	25	50	100		
DSC	Statistical Methods Lab	PTC202	1	-	-	2	25	25	50	100		
DSC	Principles of Electronics Lab	PTC204	1	-	-	2	25	25	50	100		
SEC	Engg. Graphics and Design Lab.	PME253	3	1	-	4	25	25	50	100		
VAC	General Proficiency-II /NCC/Yoga/ Sports /Cultural	GP201	1	-	-	2	-	-	100	100		
VAC	Environmental Science	TEV201	0	2	-	-	-	-	100	100		
	·	Total	25	18	2	14	250	250	700	1200		

	Category of courses							
DSC Discipline Specific Core VAC Value Addition Course								
SEC Skill Enhancement Course AEC Ability Enhancement Course		Ability Enhancement Course						

DEPARTMRNT OF ALLIED SCIENCES (MATHEMATICS)

SEMESTER I

Name of Department: - Allied Sciences (Mathematics)

8. Pre-requisite: Basic Knowledge of Mathematics

9. Course Outcome**:	After completion of the course the students will be able to:
	 CO1. Understand the concept of Matrices. CO2. Solve the system of linear equations. CO3. Understand the concept of differential calculus and apply to various discipline of Engineering. CO4. Analyze the maxima / minima values of function of two or more variables with its application to engineering. CO5. Solve the multiple integrals and apply to find the area and volumes. CO6. Utilize the vector calculus in different engineering systems.

S1.	Contents	Contact
No.	Contents	Hours
1	Matrices: Elementary row transformation, Rank of a matrix, linear dependency and independency, Consistency of a system of linear equations, Characteristic equation, Eigen values and Eigen vectors, symmetric and skew symmetric matrix, Diagonalization and their applications.	(11 Hrs)
2	Calculus-I: Higher order derivatives, Successive Differentiation, Leibnitz's	(09 Hrs)

	theorem, Limits, Continuity and Differentiability of two variables, Partial Differentiation, homogeneous functions, Euler's theorem, Expansion of function of severable variable using Taylor's and Maclaurin's theorems.	
3	Calculus-II Extrema (Maxima/ Minima) of functions of two variables, method of Lagrange's multipliers, Introduction of Jacobian, properties of Jacobian, Jacobian of implicit and explicit functions, functional dependence.	(07 Hrs)
4	Multiple Integrals Double and triple integrals, Change of order of integration, Beta and Gamma functions, Applications to area, volume, Dirichlet's integral.	(09 Hrs)
5	Vector Calculus Introduction to Vectors, Gradient, Divergence and Curl of a vector and their physical interpretation, Line, Surface and Volume integrals, Green's, Stoke's and Gauss's divergence theorems.	(09 Hrs)
	Total	(45 Hrs)

SL.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of Publication /
No.			Reprint
	Textbooks		
1.	C. B. Gupta, S. R. Singh and Mukesh Kumar, "Engineering Mathematics for Semesters I and II" McGraw Hill Education	1 st	2015
2.	Ramana, B. V., "Higher Engineering Mathematics", Tata McGraw Hill publications,	6 th	2006
3.	R. K. Jain, S. R. K. Iyengar, Advanced Engineering Mathematics, Narosa Publication,	5 th	2019
4.	Grewal, B. S., "Higher Engineering Mathematics", 40e, Khanna Publications, India.	44 th	2022
5.	Kreyszig, Erwin., "Advanced Engineering Mathematics", 9e, Wiley Publications.	9 th	2014.
6.	Tom M. Apostol 'Calculus' Volume 2 Wiley Publications.	2 nd	2022
	Reference Books		
1.	G. B. Thomas and R. L. Finney	9 th	2010
2.	Gorakh Prasad and Chandrika Prasad	11 th	1968

DEPARTMENT OF ALLIED SCIENCES (MATHEMATICS)

SEMESTER II

	-		
1.	Subject Code: TMA 20)1 se Title:	ENGINEERING MATHEMATICS-II
2.	Contact Hours: L:	3 T: 1	P: 0
3.	Examination Duration (Hrs): Theory	, l O
4.	Relative Weight: CIE	25 PRS 0	MSE 25 ESE 50 PRE 0
5.	Credits:	3	
6.	Semester:	II	
7.	Category of Course:	Discipline Specific Co	urse

Name of Department: - Allied Sciences (Mathematics)

8. Pre-requisite: Basic Knowledge of Mathematics

9. Course Outcome:	After completion of the course the students will be able to:							
	CO1. Solve the linear ordinary differential equations.							
	CO2. Utilize the Laplace transforms in linear and simultaneous linear							
	differential equations.							
	CO3. Apply the Fourier series for signal analysis in various							
	engineering discipline.							
	CO4. Classify the partial differential equations and solve							
	homogeneous partial differential equations with constant coefficients.							
	CO5. Apply method of separation of variables to solve 1D heat, wave							
	and 2D Laplace equations.							
	CO6. Utilize Fourier transforms in Engineering.							

Sl. No.	Contents				
1	Differential equation Ordinary differential equation of first order (Exact and reducible), linear differential equations of nth order with constant coefficients, complementary functions and particular integrals, Euler Homogeneous differential equation, Method of variation of parameters and applications of ODE.	(09 Hrs)			
2	Laplace Transform Introduction of Laplace Transform, Shifting Theorems Existence theorem and properties, Laplace transform of derivatives and integrals, Inverse Laplace transform, Laplace transform of periodic functions, Unit step function and Dirac delta function, Convolution theorem, Applications to solve simple linear and simultaneous linear differential	(09 Hrs)			

	equations.	
	Partial differential equations- I	
3	Introduction to PDE, Formation of PDE, solution first order PDE, Lagrange's and Charpit's methods, standard form of first order PDE.	(09 Hrs)
	Partial differential equations -II	
4	Solution of linear partial differential equations with constant coefficients of second order and their classifications: parabolic, hyperbolic and elliptic, Method of separation of variables for solving partial differential equations.	(09 Hrs)
	Fourier series and Fourier Transform	
5	Periodic functions, Fourier series of periodic functions, Euler's formula, Fourier series having arbitrary period, Change of intervals, Even and odd functions, Half range sine and cosine series. Fourier Transform, Fourier Sine and Cosine Transform, Application of Fourier Transform.	(09 Hrs)
	Total	(45 Hrs)

CI	Nome of Authony/Decla/Dublishow/Disco of Dublication	Edition	Veen of Dublication /
SL.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of Publication /
No.			Reprint
	Textbooks		
1.	C. B. Gupta, S. R. Singh and Mukesh Kumar, "Engineering	1 st	2015
	Mathematics for Semesters I and II" McGraw Hill		
	Education.		
2.	E. Kreyszig, Advanced Engineering Mathematics, Wiley	9 th	2014
	India.		
3.	B. S. Grewal, Higher Engineering Mathematics, Khanna	44 th	2022
	Publications.		
4.	Tom M. Apostol 'Calculus' Volume 2 Wiley Publications.	2^{nd}	2022
	Reference Books		
1.	C. Prasad, Advanced Mathematics for Engineers, Prasad	3 rd	2019
	Mudralaya.		
		~ th	2000
2.	R. K. Jain, S. R. K. Iyengar, Advanced Engineering	5^{th}	2009
	Mathematics, Narosa Publication.		

12. Mode of Evaluation Test / Quiz / Assignment / Mid Term Exam / End Term Exam	
---	--

DEPARTMENT OF ALLIED SCIENCES (MATHEMATICS)

SEMESTER II

Name of Department: - Allied Sciences (Mathematics)								
1.	Subject Code: TMA 20	2	Course Title:	ENGINE	ERING	MATH	IEMAT	ICS
2.	Contact Hours: L:	3	T: 1	P: 0				
3.	Examination Duration (Hrs	: Theory	y 3	Practical	0			
4.	Relative Weight: CIE	25	PRS 0	MSE 25	ESE	50	PRE	0
5.	Credits:	4						
6.	Semester:	II						
7.	Category of Course:	Discipli	ne Specific Cour	se (DSC)				

8. Pre-requisite: Basic knowledge of mathematics

9. Course	
Outcome**:	After completion of the course the students will be able to:
	CO1. Understand the concept of Matrices and determinants.
	CO2. Identify and understand the significance of Differentiation and
	Integration in Bio Technology.
	CO3. Apply the linear differential equations in Biological system.
	CO4. Illustrate linear and nonlinear algebraic equations.
	CO5. Utilize the applications of probability and Statistics in Bio
	Technology.
	CO6. Use of Mathematics and their applications in Bio Technology.

Sl. No.	Contents	Contact Hours
1	Matrix And Determinants: Definitions, type of matrices, properties of matrices, algebra of matrices (Addition, subtractions and multiplication), Determinants, Properties of determinants, Adjoint of matrix, Inverse of a matrix, System of linear equations, Eigen values and Eigen vectors for 2 x 2 matrix. Application of Matrices.	(09 Hrs)
2	Differentiation And Integration: Limit (L'Hospital Rule) and Continuity, Differentiation of Standard functions of one variable, Basic Rules of Differentiation (product rule, quotient rule, chain rule), Maxima and minima for one variable, Integration (Integration by part, Integration by substitution).	(09 Hrs)

	Differential Equations:	
3	Introduction to Differential equations, Differential equations of first order and first degree. Variable separable method, Homogeneous differential equations, linear differential equations, Linear differential equations of second order with constant coefficients, complementary function and particular integral. Applications of Differential Equations.	(09 Hrs)
4	Numerical Solution of Linear and Non-Linear Equations: Numerical solution of linear and nonlinear algebraic equations (using Bisection method, Iterative method, Newton Raphson method), Numerical Integration (Trapezoidal and Simpson's rule)	(09 Hrs)
5	Probability: Basic probability and laws, sample space, event, and properties, conditional probability, Bayes' theorem.	(09 Hrs)
	Total	(45 Hrs)

SL.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of Publication /
No.			Reprint
	Textbooks		
1.	C. B. Gupta, S. R. Singh and Mukesh Kumar,	1 st	2015
	"Engineering Mathematics for Semesters I and II" Mc		
	Graw Hill Education.		
2.	B. S. Grewal: Higher Engineering Mathematics, Khanna	44 th	2022
	Publications.		
3.	D. C. Agarwal, M. Jha ,S. K. Gupta, Remedial	1 st	2022
	Mathematics, Shree Sai Prakashan Meerut.		
4.	Piskunov N: Differential & Integral calculus, Moscow	1^{st}	1969
	Peace Puse.		
	Reference Books		
1.	A. R. Vashitha. Remedial Mathematics, Krishna	5^{th}	2020
	Publications, Meerut.		
2.	R. K. Jain and S. R. K. Iyengar	5 th	2002

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term Exam
-----	--------------------	--

DEPARTMENT OF ALLIED SCIENCES (MATHEMATICS)

SEMESTER I

Name of Department: - Allied Sciences (Mathematics)											
1.	Subject Code	e: TTC-101		se Title:			Discrete Mathematics				
2.	Contact Hour	s: L:	3	T:	1	P:	0]			
3.	Examination	Duration (H	(rs): Theor	ry		3	l		0		
4.	Relative Weig	ght: CI	E 25	PR	s 0	MSE	2 5	ESE	50	PRE	0
5.	Credits:		4								
6.	Semester:		I								
7.	Category of C	Course:	Discip	line Sp	ecific C	ourse (DS	C)				
8.	Pre-requisite:	Basic Know	wledge of	Mathe	ematic	8					
9. Course Outcome**: After completing CO1. Define the CO2. Underst field. CO3. Demonst recurrence relat CO4. Analyze CO5.Elaborate CO6.Utilize province relation			ne the Boo erstand the nonstrate relation. yze differe orate the na	blean and the condition of the condition	Algebr cepts ounting gorithm deduc	a and log of Group g princip ns for tre tion and	gic gate o, ring, ole, ge ees and axiom	es. integra nerating graphs. systems	l dom	tion and	

Sl. No.	Contents	Contact Hours
1	Boolean algebra: Introduction of Boolean algebra, truth table, basic logic gate, basic postulates of Boolean algebra, principle of duality, canonical form, Karnaugh map.	(09 Hrs)
2	Abstract algebra: Set and relations, groups, abelian group, Finite and Infinite group, order of group, cyclic group, coset, Lagrang's theorem, ring, division ring , ring with unity, Integral domain, field.	(09 Hrs)
3	Combinatorics: Basic counting, balls and bins problems, generating functions, recurrence relations. Proof techniques, principle of mathematical induction, pigeonhole principle.	(09 Hrs)

4	Graph Theory: Graphs and digraphs, complement, isomorphism, connectedness and reachability, adjacency matrix, Eulerian paths and circuits in graphs and digraphs, Hamiltonian paths and circuits in graphs and tournaments, trees; Planar graphs, Euler's formula, dual of a planer graph, independence number and clique number, chromatic number, statement of Four-color theorem.	(09 Hrs)
5	Logic: Propositional calculus - propositions and connectives, syntax; Semantics - truth assignments and truth tables, validity and satisfiability, tautology; Adequate set of connectives; Equivalence and normal forms; Compactness and resolution; Formal reducibility - natural deduction system and axiom system; Soundness and completeness.	(09 Hrs)
	Total	(45 Hrs)

SL. No.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of Publicati on / Reprint
	Textbooks	- nd	
1.	Topics in Algebra, I. N. Herstein, John Wiley and Sons.	2^{nd}	1975
2.	Digital Logic & Computer Design, M. Morris Mano, Pearson	5 th	2011
3.	Elements of Discrete Mathematics, (Second Edition) C. L. LiuMcGraw Hill, New Delhi	4 th	2017
4.	Graph Theory with Applications, J. A. Bondy and U. S. R. Murty, Macmillan Press, London.	1 st	1976
5.	Mathematical Logic for Computer Science, L. Zhongwan, World Scientific, Singapore	2 nd	1998
	Reference Books		
1.	Introduction to linear algebra. Gilbert Strang.	5 th	2022
2.	Introductory Combinatorics, R. A. Brualdi, North-Holland, New York.	5 th	2019
3.	Graph Theory with Applications to Engineering and Computer Science, N. Deo, Prentice Hall, Englewood Cliffs.	1 st	2016
4.	Introduction to Mathematical Logic, (Second Edition), E. Mendelsohn, Van-Nostrand, London.	3 rd	2007

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term Exam
-----	--------------------	--

DEPARTMRNT OF ALLIED SCIENCES (MATHEMATICS) SEMESTER I

Name of Department: - Allied Sciences (Mathematics)			Statistic	cs Probabili	ity and		
1.	Subject Code: TTC-1	02	Course	Title:		Calculus	
2.	Contact Hours: L:	3 T:	1	P: 0			
3.	Examination Duration (Hrs): Theory	3	ıl		0	
4.	Relative Weight: CIE	25 PRS	5 0	MSE	25 ESE	50 PRE	0
5.	Credits:	4					
6.	Semester:	I					
7.	Category of Course:	Discipline Sp	ecific Cours	e (DSC)			

8. Pre-requisite: Basic Knowledge of Mathematics

9. Course	
Outcome**:	After completion of the course the students will be able to:
	CO1. Understand business problems in appropriate statistical terms in order use data to make better decisions.CO2.Analyze the concept of probability with applications.
	CO3. Understand the concept of Inferential Statistics and applications in Business.
	CO4. Describe statistical methods and probability distribution.
	CO5. Demonstrate application of Moments. CO6. Demonstrate application of Double and triple Integral.

Ref: GEU/MATH-BOS/2023/01

Sl. No.	Contents	
1	Introduction to Statistics: Definition of Statistics. Basic objectives. Applications in various branches of science with examples. Collection of Data: Internal and external data, Primary and secondary Data. Population and sample, Representative sample. Descriptive Statistics: Classification and tabulation of univariate data, graphical representation, Frequency curves. Descriptive measures - central tendency and dispersion. Bivariate data. Summarization, marginal and conditional frequency distribution.	(09 Hrs)
2	Probability: Concept of experiments, sample space, event. Definition of Probability. Conditional Probability, Bayes Theorem.	(09 Hrs)
3	Probability distributions: Discrete & continuous distributions, Binomial, Poisson and Geometric distributions, Uniform, Exponential, Normal, Chi-	(09 Hrs)

	square, t, F distributions.	
4	Expected values and moments: Mathematical expectation and its properties, Moments (including variance) and their properties, interpretation, Moment generating function.	(09 Hrs)
5	Calculus: Basic concepts of Differential and integral calculus, limit, continuity and differentiability for two variables, double and triple integral, change of order of Integration, Application of double and triple integral.	(09 Hrs)
	Total	(45 Hrs)

SL.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of Publication /
No.			Reprint
	Textbooks		
1.	C. B. Gupta, S. R. Singh and Mukesh Kumar,	1^{st}	2016
	"Engineering Mathematics for Semesters III and IV"		
	McGraw Hill Education		
2.	Introduction of Probability Models, S. M. Ross, Academic Press, N.Y.	11 th	2014
3.	Fundamentals of Statistics, vol. I & II, A. Goon, M. Gupta and B. Dasgupta, World Press.	3 rd	1968
4.	Higher Engineering Mathematics, B. S. Grewal, Khanna Publication, Delhi.	43 rd	2015
	Reference Books		
1.	A first course in Probability, S. M. Ross, Prentice Hall.	9 th	2013
2.	Probability and Statistics for Engineers, (Fourth Edition), I. R. Miller, J.E. Freund and R. Johnson, PHI.	9 th	2017
3.	Introduction to the Theory of Statistics, A. M. Mood, F.A. Graybill and D.C. Boes, McGraw Hill Education.	3 rd	1974
4.	Advanced Engineering Mathematics, Peter V. O'Neil, Thomson Learning.	7 th	2010
5.	Advanced Engineering Mathematics, M. D. Greenberg, Pearson Education.	2 nd	1998

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term Exam

DEPARTMRNT OF ALLIED SCIENCES (MATHEMATICS)

SEMESTER II

Name of Department: - Allied Sciences (Mathematics)			
1.	Subject Code: TTC-20	1 rse Title: Linear Algebra	
2.	Contact Hours: L:	3 T: 1 P: 0	
3.	Examination Duration (Hrs	s): Theory 3 I 0	
4.	Relative Weight: CIE	25 PRS 0 MSE 25 ESE 50 PRE 0	
5.	Credits:	4	
6.	Semester:		
7.	Category of Course:	Discipline Specific Course (DSC)	
8.	Pre-requisite: Basic Knowledge of Mathematics		

9. Course	
Outcome**:	After completion of the course the students will be able to:
	CO1. Understand the concept of Matrices and determinants.
	CO2. Discussion of rank, nullity and system of linear equations.
	CO3. Identify and understand the significance of Gram-Schmidt
	orthogonalization
	CO4. Explain the applications of Eigenvalues and Eigenvectors.
	CO5. Analyze the linear transformation of matrices.
	CO6. Demonstrate application of Image Processing and Machine
	Learning.

Sl. No.	Contents	Contact Hours
1	Elementary row transformation, Rank of a matrix, linear dependency and independency, Consistency of a system of linear equations, Characteristic equation, Eigen values and Eigen vectors, symmetric and skew symmetric matrix, Diagonalization and their applications, Gaussian elimination; LU Decomposition.	(09 Hrs)
2	Vector space, basis Dimension, subspace of vector space Orthogonality; Projections.	(09 Hrs)
3	Linear transformations rank and nullity theorem, Inverse of Linear Transformation.	(09 Hrs)
4	Inner product space ,orthogonality, projection, Gram-Schmidt orthogonalization and QR decomposition.	(09 Hrs)

5	Singular value decomposition and Principal component analysis Introduction to their applications in Image Processing and Machine Learning.	(09 Hrs)
	Total	(45 Hrs)

SL.	Name of Authors/Books/Publishers/Place of	Edition	Year of Publication /
No.	Publication		Reprint
	Textbooks		
1	Higher Engineering Mathematics, B. S. Grewal, Khanna Publishers.	44 th	2015
2	C. B. Gupta, S. R. Singh and Mukesh Kumar, "Engineering Mathematics for Semesters I and II" McGraw Hill Education	1 st	2015
3	K. Holfman, R. Kunze, Linear Algebra	2 nd	2018
4	V. Krishnamurthy, V.P. Mainra, J.L. Arora	1 st	1976
	Reference Books		
1.	Advanced Engineering Mathematics, Peter V. O'Neil, Cengage Learning.	7 th	2010
2.	Advanced Engineering Mathematics, Michael. D. Greenberg, Pearson.	2 nd	1998
3.	Introduction to linear algebra, (Fifth Edition), Gilbert Strang, Wellesley-Cambridge Press.	5 th	2016
4.	Applied Mathematics (Vol. I & II), P. N. Wartikar & J. N. Wartikar, Pune Vidyarthi Griha Prakashan.	1 st	2019
5.	Digital Image Processing, R C Gonzalez and R E Woods, Pearson.	4 th	2017
6.	https://machinelearningmastery.com/introduction- matrices-machine-learning/		
•			-

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term Exam
-----	--------------------	--

DEPARTMRNT OF ALLIED SCIENCES (MATHEMATICS)

SEMESTER II

Name of Department: - Allied Sciences (Mathematics)						Statistical Methods			ods		
1.	Subject Code	: TTC-20	2		Cours	se Title:					
2.	Contact Hour	rs: L:	3	T:	1	P: (0				
3.	Examination	Duration (Hr	s): Theo	ry	3	l	1		0		
4.	Relative Wei	ght: CIE	25	PRS	0	MSE	25	ESE	50	PRE	0
5.	Credits:		4]		_					
6.	Semester:		II								
7.	Category of C	Course:	Discip	line Spec	ific Cou	rse (DSC))				
8.	Pre-requisite: Basic Knowledge of Mathematics										
	9. Course	After compl	etion of	the cour	rse the	students	will t	be able t	0:		7
Outcom	ne**:										
		CO1. Identit									
		CO2. Fam coefficient.	marize	with	correla	tion co	Deffici	ient ar	ia reg	gression	1
		CO3. Explai	n testino	of Hyr	othesis	!					
		CO4. Under	-	• •			statist	ical tool	s and		
		techniques i				i some i	statist.	icui tool	is und		
		CO5. Analy				odels .					
		CO6. Under	stand th	e conce	pt of st	atistical	mode	els and i	ts appli	ication	

in solving analytics problems

Sl. No.	Contents	Contact Hours
1	Sampling Techniques: Random sampling. Sampling from finite and infinite populations. Estimates and standard error (sampling with replacement and s without replacement), Sampling distribution of sample mean, stratified random sampling	(09 Hrs)
2	Linear Statistical Models: Scatter diagram. Linear regression and correlation. Least squares method. Rank correlation. Standard multiple regression models with emphasis on detection of collinearity, outliers, non-normality and autocorrelation, Validation of model assumptions. Multiple correlation, Analysis of variance (one way, two way with as well as without interaction)	(09 Hrs)
3	Estimation: Point estimation, criteria for good estimates (un-biasedness, consistency), Methods of estimation including maximum likelihood estimation.	(09 Hrs)

4	Test of hypothesis: Concept & formulation, Type I and Type II errors, Neyman Pearson lemma, Procedures of testing.	(09 Hrs)
5	 Non-parametric Inference: Comparison with parametric inference, Use of order statistics. Sign test, Wilcoxon signed rank test, Mann-Whitney test, Run test, Kolmogorov-Smirnov test. Spearman's and Kendall's test. Basics of Time Series Analysis & Forecasting: Stationary, ARIMA Models: Identification, Estimation and Forecasting. 	(09 Hrs)
	Laboratory R statistical programming language: Introduction to R, Functions, Control flow and Loops, Working with Vectors and Matrices, Reading in Data, Writing Data, Working with Data, Manipulating Data, Simulation, Linear model, Data Frame, Graphics in R	
	Total	(45 Hrs)

SL.	Name of Authors/Books/Publishers/Place of	Edition	Year of Publication /
No.	Publication		Reprint
	Textbooks		
1.	Probability and Statistics for Engineers (4th Edition), I.R. Miller, J.E. Freund and R. Johnson.	8 th	2015
2.	Fundamentals of Statistics (Vol. I & Vol. II), A. Goon, M. Gupta and B. Dasgupta	2 nd	2016
3.	The Analysis of Time Series: An Introduction, Chris Chatfield.	7 th	2019
	Reference Books		
1.	Introduction to Linear Regression Analysis, D.C. Montgomery & E.Peck	5 th	2013
2.	Introduction to the Theory of Statistics, A.M. Mood, F.A. Graybill& D.C. Boes.	3 rd	2017
3.	Applied Regression Analysis, N. Draper & H. Smith	3 rd	1998
4.	Hands-on Programming with R,- Garrett Grolemund	2 nd	2015
5.	R for Everyone: Advanced Analytics and Graphics, Jared P. Lander	1 st	2013

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term Exam
-----	--------------------	--

GRAPHIC ERA (DEEMED TO BE UNIVERSITY), DEHRADUN

SEMESTER I

Name of Department: - Computer Science and Engineering

1.	Subject Code: TC:	5 101	Course Titl	e:		
	Course Title: Fund	lamental of cor	nputer and int	roduction to pr	rogramming	
2.	Contact Hours:	-: 3 T:	0 P:	0		
3.	Examination Duration	n (Hrs): The	eory 3	Practical	0	
4.	Relative Weight:	CIE 25 PR	S 0 MSE	25 SEE 50	0 PRE 0	
5.	Credits:	3				
6.	Semester:	lst				
7.	Category of Course:	DSC				
8.	Pre- requisite: Basic	: Knowledge of	Mathematics			
9. Co ı	 8. Pre- requisite: Basic Knowledge of Mathematics 9. Course Outcome: Learn the concepts of IT and understand the fundamentals of basic building blocks of computer science. Understand basic data types and syntax of C programming. Propose solution to problem by using tools like algorithm and flowcharts. Analyze and select best possible solution for decision-based problems using decision making skills and develop the aptitude to solve iterative problems using different types of looping statements. Implement complex problem as a collection of sub problems by applying modularization in applications using functions. Apply and implement the concept arrays for providing solution to homogenous collection of data types. 					

SI. No.	Contents	Contact Hours
1	UNIT-I Generation of computers, Computer system memory hierarchy, Input/Output, RAM/ROM, Software & Hardware, Understand bit, byte, KB, MB, GB and their relations to each other, Operating System overview, Computer Networks OverviewAlgorithms and Flow Charts – Examples of Flow charts for loops and conditional statements	8
2	UNIT- 2 First C program - Hello world, How to open a command prompt on Windows	10

	Total	43
	Arrays: Single-dimensional arrays, initializing arrays, computing address of an element in array, character arrays, segmentation fault, bound checking, Searching and Sorting.	
5	UNIT- V	10
	Storage classes: Automatic, Static, Register, External, Static and Dynamic linking implementation, C program memory (show different areas of C program memory and where different type of variables are stored), scope rules.	
	Functions: Function prototype, function return type, signature of a function, function arguments, call by value, Function call stack, Recursion v/s Iteration, passing arrays to functions,	
4	UNIT- IV	7
	Loops: 'for' loops, 'while' loops, 'do while' loops, entry control and exit control, break and continue, nested loops	
	Conditional statements: if statement, if-else statement, ternary statement or ternary operator, nested if-else statement, switch statement, Difference between performance of if else and switch, Advantages of if else and switch over each other	
3		8
	Operators – equality and assignment, Compound assignment operators, Increment and decrement operators, Performance comparison between pre and post increment/decrement operators, bitwise operators, Logical Operators, comma operator, precedence and associativity.	
	Life of a C program (Preprocessing, Compilation, Assembly, Linking, Loading, Execution), Compiling from the command line, Macros,	
	Variables and Data types - Variables, Identifiers, data types and sizes, type conversions, difference between declaration and definition of a variable, Constants	
	or Linux. How to read and print on screen - printf(),scanf(),getchar(), putchar()	

SL.	Name of Authors/Books/Publishers	Edition	Year of
No.			Publication/Reprint
	Text Books		
1.	Peter Prinz, Tony Crawford,"C in a Nutshell", Oreilly Publishers,	1st	2011
2.	Peter Norton, "Introduction to computers", TMH,	6th	2009
	E.Balagurusamy,"Programming in ANSI C",McGraw Hill	6th	2015
	Reference Books		
1.	Steve Oualline, "Practical C programming", Orielly	3rd	2011

	Publishers, 2011.		
2.	Brian W Kernighan, Dennis M Ritcie,"The C Programming Language", Prentice Hall, 1988. R3. Herbert Schildt," C: The Complete Reference", 4thEdition.TMH, 2000.	2nd	2000
3.	YashwantKanetkar,"Let Us C",BPB Publication	8th	2007

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term
		Exam / Lab Exam

GRAPHIC ERA (DEEMED TO BE UNIVERSITY), DEHRADUN

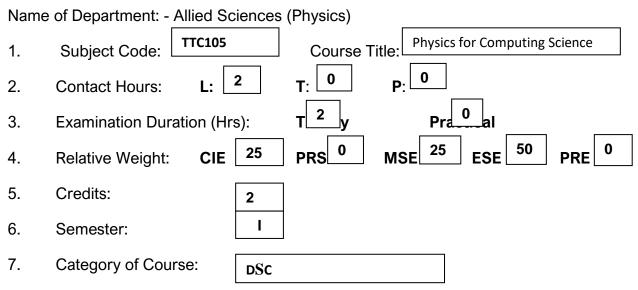
SEMESTER II

Name of Department: - Computer Science and Engineering

1.	Subject Code: TCS 207	Course Title:
	Course Title: Program	ming for Problem Solving
2.	Contact Hours: L:	T: 0 P: 0
3.	Examination Duration (Hr	s): Theory 3 Practical 0
4.	Relative Weight: CIE	25 PRS 0 MSE 25 SEE 50 PRE 0
5.	Credits:	3
6.	Semester:	lind
7.	Category of Course :	DSC

8. Pre- requisite: Basic Knowledge of Mathematics and Computer Fundamentals

9. Course	• Learn and apply concepts of strings and multi-dimensional array for providing solutions to homogenous collection of data types
Outcome:	 Propose solution to problem by using tools like algorithm and flowcharts.
	• Apply the concept of pointers to optimize memory management by overcoming the limitations of arrays.
	 Process and analyze problems based on heterogeneous collection of data using structures.
	 Apply concepts of file handling to implement data storage and retrieval tasks.
	 Implement the basic real life problems using python


SI. No.	Contents	Contact Hours
1	UNIT- I	6
	Multi-Dimensional Arrays- Initializing arrays, row major and column major form of an array, character strings and arrays, Strings – Declaration of strings, Initialization of strings using arrays and pointers, Standard library functions of string.	
2	UNIT-2 Pointers –Basic of pointers and addresses, Pointers and arrays, Pointer arithmetic, passing pointers to functions, call by reference. Accessing string through pointers.	10

	,fscanf(),fgets(), fputs(), Reading and writing in a binary file, counting lines in a text file, Search in a text file, Random file accessing methods- feof(), fseek(), ftell() and rewind() functions.	
4	 UNIT- IV Introduction to Python- History of Python, Need of Python Programming, Python features, First Python Program, Running python Scripts, Variables, Reserved words, Lines and indentation, Quotations, Comments, Input output. Data Types, Operators and Expressions: Standard Data Types – Numbers, strings, Boolean, Operators – Arithmetic Operators, comparison Operators, assignment Operators, logical Operators, Bitwise Operators. 	10
5	 UNIT- V Control flow – if, if-elif-else, for, while, break, continue, pass, range(), nested loops. Functions – Handling functions in Puthon File Handling – Reading text file, writing text file, copying one file to another 	10
	Total	44

SL. No.	Name of Authors/Books/Publishers	Edition	Year of Publication /Reprint
	Text Books		
1.	Peter Prinz, Tony Crawford,"C in a Nutshell", Oreilly Publishers,	1st	2011
2.	YashwantKanetkar,"Let Us C",BPB Publication	8th	2007
	Reference Books		
1.	• Steve Oualline, "Practical C programming", Orielly Publishers, 2011.	3rd	2011
2.	• Brian W Kernighan, Dennis M Ritcie,"The C Programming Language",Prentice Hall, 1988. R3. Herbert Schildt," C: The Complete Reference", 4thEdition.TMH, 2000.	2nd	2000
3.	• E.Balagurusamy,"Programming in ANSI C", McGraw Hill	6th	2015

DEPARTMENT OF ALLIED SCIENCES - PHYSICS

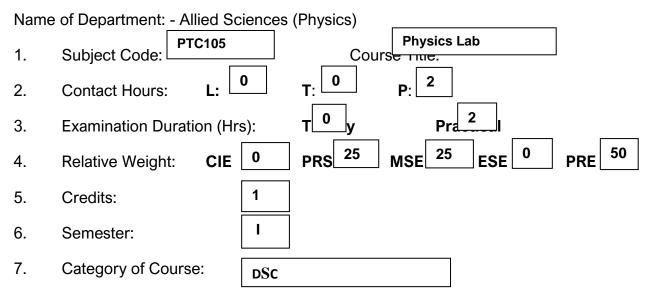
SEMESTER I

8. **Pre-requisite**: Basic Knowledge of Physics for computer Science

9.	Course	After completion of the course the students will be able to:
Outcome:		
		CO1: Define the basics of Oscillations.
		CO2: Extend the knowledge of Interference and Electromagnetism.
		CO3: Understand the basics of quantum mechanics.
		CO4: Discuss different crystallographic structures in solid state.
		CO5: Examine the basics of LASER, fiber optics and it their application.
		CO6: Explain the basics of Thermodynamics.

UNIT CONTENTS		Contact Hrs
Unit/Module-I	Oscillation: Periodic motion-simple harmonic motion-characteristics of simple harmonic motion-vibration of simple spring-mass system. Resonance-definition, damped harmonic oscillator – heavy, critical and light damping, energy decay in a damped harmonic oscillator, quality factor, forced mechanical and electrical oscillators.	4
Unit/Module- II	Interference-principle of superposition-Young's experiment: Theory of interference fringes, types of interference, Fresnel's prism, Newton's rings, Diffraction, Difference between interference and diffraction, Fraunhofer diffraction at single slit, plane diffraction grating.	5
Unit/Module-III	Basic Idea of Electromagnetisms: Continuity equation for current	3

	densities, Maxwell's equation in vacuum and non-conducting medium.	
Unit/ Module-IV	Quantum Mechanics: Introduction, Planck's quantum theory, Matter waves, de-Broglie wavelength, Heisenberg's Uncertainty principle, Physical significance of wave function, time independent and time dependent Schrödinger's wave equation, , Particle in a one dimensional infinite potential box	4
Unit/ Module-V	 Crystallography: Basic terms-types of crystal systems, Bravais lattices, miller indices, d spacing, Atomic packing factor for SC, BCC, FCC and HCP structures, X-ray diffraction Semiconductor Physics: Conductor, Semiconductor and Insulator; Origin of Band Theory, Basic concept of Band theory, 	3
Unit/ Module-VI	Laser and Fiber optics: Spatial and temporal coherence, Einstein's theory of matter radiation interaction and A and B coefficients; amplification of light by population inversion, different types of lasers: Ruby Laser, CO ₂ and Neodymium YAG (Neodymium-doped Yttrium Aluminum Garnet); Properties of laser beams: mono-chromaticity, , directionality and brightness, laser speckles, applications of lasers in engineering. Fiber optics and Applications, Types of optical fibers.	5
Unit/ Module-VII	Thermodynamics : Zeroth law of thermodynamics, first law of thermodynamics, brief discussion on application of 1st law, second law of thermodynamics and concept of Engine, entropy, change in entropy in reversible and irreversible processes.	4
		28


Text Books:

S.No.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of Publication/ Reprint
1.	Ajoy Ghatak, "Optics", Tata Mc Graw Hill.	4 th Edition	2009
2.	N. Subrahmanyam Brijlal& M. N. Avadhanulu, "Optics:", S. Chand.	24 th Edition	2010
3.	A. Beiser, "Concepts of Modern Physics", Tata Mc Graw Hill.	5 th Edition	2001
4.	Resnick, Krane, Halliday, "Physics (vol I&II)", Wiley.	5 th Edition	2007
5.	N. David Mermin, Quantum computer Science, Cambridge University Press.	1 st Edition	2007
6.	Adam Smith, "The Beginner's guide to quantum computing & mechanics", A. Smith Media.	1 st Edition	2022

7.	Frank S Crawford Jr., "Waves", The McGraw Hill Companies	Volume 3	2008
8.	Leonid V. Azaroff, "Introduction to Solids", Tata Mc Graw Hill.	31 st reprint	2008
9.	R E Sonntag, "Fundamentals of Thermodynamics", Wiley Publishers	6 th Edition	2009
10.	P K Nag, "Basic and Applied Thermodynamics", McGraw Hill Education India	2 nd Edition	2014
	Reference Books		
1.	John R. Taylor, Chris D. Zafiratos, Michael A. Dubson, "Modern Physics", Pearson Education.	1 st Edition	2007
2.	Gerd Keiser, "Optic Fiber Communication", Tata Mc. Graw Hill.	5 th Edition	2017
3.	Alastair I M Rae, Jim Napolitano, "Quantum Mechanics" Wiley.	6 th Edition	2015
4.	David J. Griffiths, "Introduction to Electrodynamics", Prentice.	3 rd Edition	2011
5.	Charles P. Poole, Jr. Frank J. Owens, "Introduction to Nanotechnology", Wiley.		2017
6.	Hug D. Young & Roger A. Freedman, "University Physics", Edition, Pearson Publication.	12 th Edition	2008
7.	Alan Giambattista, Betty Mc. Carthy Richardson, Robert C Richardson, "Fundamentals of Physics", Tata Mc Graw Hill.	1 st Edition	2009
8.	Parag Lala, "Quantum computing", Tata Mc Graw Hill.	1 st Edition	2019
9.	Nielsen, "Quantum computation and quantum information", Cambridge University Press.	1 st Edition	2007
10.	SO Pillai, "Solid State Physics", New Age International Publishers	10 th Edition	2022
11.	M. Ali Omar, "Elementary Solid State Physics", Pearson Education	5 th edition	2009
12.	NK Bajaj, "The Physics of Waves and Oscillations", Tata Mc Graw Hill.	25 th reprint	2009
13.	YA Cengal, "Thermodynamics- An Engineering Approach", McGraw Hill Education India	Special Edition	2016

DEPARTMENT OF ALLIED SCIENCES - PHYSICS

Semester I

8. Pre-requisite: Basic Knowledge of Experiments in Physics

9. Course	After completion of the course the students will be able to:
Outcome:	 CO1: Find the variation of Magnetic field along the axis of current carrying coil and determine Hall coefficient and energy band gap (Fourprobe method) of a semi-conductor. CO2: Understand the phenomena of photoelectric effect and determine the Plank's constant. Also calibrate analogue instruments and determine the specific resistance. CO3: Apply the methods of diffraction and Interference to determine the wavelength of Laser and sodium light (Monochromatic light) and resolving power of a grating. CO4: Determine the parameters of optical fiber. Also determine the Stefan's Constant

10. **Details of the Course:** Students have to perform any 10 experiments:

SI. No.		Contents	Contact Hours
	1. 2. 3.	variation of intensity with distance.	2
	4. 5.	To determine the wavelength of given laser light by plane diffraction grating. To determine of wavelength of monochromatic light by Newton's Ring experiment	

6.	To determine the numerical aperture and acceptance angle of an Optical			
	fiber			
7.	To determine the Stefan's Constant.			
8.	To determine the wavelength of monochromatic light using Fresnal's			
	biprism experiment.			
9.	To determine the specific resistance of constantan wire using Carey			
	Foster bridge.			
10.	To determine the energy band gap of a semiconductor by Four-probe			
	method.			
11.	To determine the Resolving Power of a Plane Diffraction Grating.			
12.	To calibrate ammeter and voltmeter using a potentiometer.			
Reference Books:				
(i)	Advanced Practical Physics for students, B.L.Flint and H.T.Worsnop,			
	1971, Asia Publishing House.			
(ii) Advanced level Physics Practicals, Michael Nelson and Jon M.			
	Ogborn, 4th Edition, reprinted 1985, Heinemann Educational			
	Publishers			
(ii	i) A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th			
	Edition, 2011, Kitab Mahal, New Delhi.			
(iv	· · · ·			
	D.P.Khandelwal, 1985, Vani Publication.			
		I		

DEPARTMENT OF ALLIED SCIENCES - PHYSICS

SEMESTER I / II

Name of Department: - Allied Sciences (Physics)				
1.	Subject Code: TPH 101/	/201 Course Title: Engineering Physics		
2.	Contact Hours: L:	3 T: 0 P: 0		
3.	Examination Duration (Hrs	s): T <u>3</u> y Pra_al		
4.	Relative Weight: CIE	25 PRS 0 MSE 25 SEE 50 PRE	0	
5.	Credits:	3		
6.	Semester:	1/11		
7.	Category of Course:	DSC		

8. **Pre-requisite**: Basic Knowledge of Physics

9.	Course	After completion of the course the students will be able to:	
Outcome:		CO1: Define the wave nature of light through different phenomenon.	
		CO2: Extend the knowledge of Laser, fiber optics and polarization in	
		engineering problems.	
		CO3: Understand the concept of theory of relativity.	
		CO4: Discuss quantum theory of radiation and applications of	
		Schrodinger wave equations.	
		CO5: Examine the behavior of superconductors and quantum	
		computers.	
		CO6: Explain the Maxwell's equations and nanomaterials.	

UNIT	CONTENTS	
Unit/Module-I	Interference: Conditions of interference, Spatial and temporal coherence, Bi-prism,Unit/Module-Iinterference in wedge shaped film, Newton's rings.	
	Diffraction: Fraunhofer diffraction at single slit and n-slits (Diffraction Grating). Rayleigh's criteria of resolution. Resolving power of grating.	9
	Polarization: Basic theory of double refraction, Malus law, Ordinary and Extra- ordinary ray, Production, and detection of plane, elliptically and circularly polarized light, specific rotation and polarimeters.	
Unit/Module- II	Laser: Spontaneous and Stimulated emission of radiation, Einstein Coefficients, Principle of laser action. Construction and working of Ruby and He-Ne laser photovoltaic effect.	9
	Fiber Optics: Introduction to fiber optics; types of fiber, acceptance angle and cone angle, numerical aperture.	

Unit/Module-III Special theory of relativity: Inertial and non-inertial frames, Galilean transformation, Michelson-Morley experiment (qualitatively), Einstein postulates of special theory of relativity, Lorentz transformation equations, length contraction, time dilation, variation of mass with velocity, mass-energy relation.			
Unit/ Module-IV	 Quantum Mechanics: Quantum concept and radiation. Wave particle duality (de-Broglie concept of matter waves), Heisenberg's uncertainty principle, wave function and its significance, Schrodinger's equations, Schrodinger's wave function for a particle confined in one dimensional infinite potential box (rigid box), Eigen values and Eigen functions. Quantum computers: Introduction to quantum computing, Principle, Nanocomputing, prospects and challenges. 	8	
Unit/ Module-V	 Superconductivity: Essential properties of superconductors, zero resistivity, Type I, Type II superconductors and their properties. Electromagnetism: Displacement current, Maxwell's Equations in differential form. Nano Physics: Density of states, Nanostructures, fabrication, and characterization techniques (qualitatively). 	8	
	Total	42	

Text Books:

			Year of
			Publication/
S.No.	Name of Authors/Books/Publishers/Place of Publication	Edition	Reprint
1.	Ajoy Ghatak, "Optics", Tata Mc Graw Hill.	4 th Edition	2009
2.	N. Subrahmanyam Brijlal& M. N. Avadhanulu, "Optics:", S. Chand.	24 th Edition	2010
3.	A. Beiser, "Concepts of Modern Physics", Tata Mc Graw Hill.	1 st Edition	
4.	Resnick, Krane, Halliday, "Physics (vol I&II)", Wiley.	5 th Edition	2007
5.	Robert Resnick, "Introduction to Special Relativity", Wiley Publishers.	1 st Edition	2007
6.	N. David Mermin, Quantum computer Science, Cambridge University Press.	1 st Edition	2007
7.	Adam Smith, "The Beginner's guide to quantum computing & mechanics", A. Smith	1 st Edition	2022
	Media.		
	Reference Books	1 st Edition	
1.	John R. Taylor, Chris D. Zafiratos, Michael A. Dubson, "Modern Physics", Pearson	1 st Edition	2007
	Education.		
2.	Gerd Keiser, "Optic Fiber Communication", Tata Mc. Graw Hill.	5 th Edition	2017
3.	Alastair I M Rae, Jim Napolitano, "Quantum Mechanics" Wiley.	6 th Edition	2015
L	1		

4.	David J. Griffiths, "Introduction to Electrodynamics", Prentice.	3 rd Edition	2011
5.	Charles P. Poole, Jr. Frank J. Owens, "Introduction to Nanotechnology", Wiley.		2017
6.	Hug D. Young & Roger A. Freedman, "University Physics", Edition, Pearson Publication.	12 th Edition	2008
7.	Alan Giambattista, Betty Mc. Carthy Richardson, Robert C Richardson, "Fundamentals of Physics", Tata Mc Graw Hill.	1 st Edition	2009
8.	Parag Lala, "Quantum computing", Tata Mc Graw Hill.	1 st Edition	2019
9.	Nielsen, "Quantum computation and quantum information "Cambridge University Press.	1 st Edition	2007

Semester I/II

Name of Department: - Allied Sciences (Physics)

1.	Subject Code: PPH 151/2	51	Cou	rse Title:	Physics Lab		
2.	Contact Hours: L:	D	T : 0	P: 2			
3.	Examination Duration (Hrs	6):	тоу	Pra	2		
4.	Relative Weight: CIE	0	PRS ²⁵	MSE ²⁵	SEE 0	PRE	50
5.	Credits:	1					
6.	Semester:	I/II					
7.	Category of Course:	DSC					

8. Pre-requisite: Basic Knowledge of Experiments in Physics

9. Course	After completion of the course the students will be able to:	
Outcome:	CO1: Find the electrical and magnetic properties of materials and extend	
	the knowledge of nanotechnology using electroplating.	
	CO2: Understand the principle and characteristics of photo devices and	
	optical fiber.	
	CO3: Apply the methods of calibration to analog instruments.	
	CO4: Determine the refractive index of liquid, wavelength of light and	
	specific rotation of optically active substance through experiments based	
	on phenomena of optics.	

SI. No.	Contents	Contact Hours
	Students have to perform any twelve experiments:	
	 To determine the wavelength of monochromatic light by Newton's ring experiment. 	
	 To determine refractive index of transparent liquid by Newton's ring experiment. 	2
	 To determine the specific resistance of the constantan wire using Carey- Foster's bridge. 	
	 To determine the wavelength of monochromatic light using Fresnel Biprism experiment 	

5.	To determine the energy band gap of given semiconductor by
	Four-probe method.
6.	(a) To determine the wavelengths of spectral line of Mercury
	light using plane transmission grating.
	(b) To determine the wavelengths of given Laser light using
	plane transmission grating.
7.	To study the variation of magnetic field with distance along the
	axis of circular coil carrying current and to determine the
	radius of coil.
8.	To determine the magnetic susceptibility of a paramagnetic
	substance by Quincke's method.
9.	To determine the specific rotation of Sugar Solution using Half
	Shade Polarimeter.
10	. To study the characteristics of Solar Cell
11	a) To calibrate Voltmeter by using potentiometer.
	b) To calibrate Ammeter by using potentiometer.
12	. To determine Planck's constant by photoelectric method and
	study the variation of intensity with distance.
13	. To determine the electro chemical equivalent of Copper.
14	. To Verify Law of Malus.
15	. To study Hall Effect and determine the hall voltage, hall
	coefficient, current density and carrier mobility of a given
	semiconductor.
16	. To determine the numerical aperture and acceptance angle of
	an optical fiber.
17	. To measure the refractive index of transparent liquid using Laser.
	To determine the dielectric constant of air. To determine wavelength of monochromatic light using Michelson
	interferometer.

GRAPHIC ERA (DEEMED TO BE UNIVERSITY), DEHRADUN

SEMESTER I and II

Name of Department: - **Chemistry**

1.	Subject Code:	TCH101/201	Course Title:	Engineering Chemistry	
2.	Contact Hours:	L: 3	T: 0	P: 0	
3.	Examination Dur	ation (Hrs): Theo i	у 3	Practical 0	
4.	Relative Weight	:: CWA 25	PRS 0	MSE 25 ESE 50 PR	E 0
5.	Credits:	3	<u> </u>		
6.	Semester:	Autu	mn/Spring		
7.	Subject Area:				
8.	Pre-requisite:	Basic Knowl	edge of Chemis	stry.	
9. Cou Outco		 bonding and s understand the and domestic a classify variou Interpret and c and non-conve apply the basic 	pectroscopic teo e chemistry of p application us types of polyn listinguish betwentional fuels c principles of e	re and properties of moleculesba chniques purification of water and itsindus mers and their applications yeen the different types ofconver electrochemistry in different on control, fuel cells and industr	strial ntional

UNIT	CONTENTS	Contact Hrs
	MOLECULAR STUCTURE AND SPECTROSCOPIC TECHNIQUES	
Unit - I	Molecular Orbital Theory, Formation of homo and heteronuclear diatomic molecules Hydrogen Bonding and its application Metallic Bonding (Band theory) and application to conductors, semiconductors and insulators Nanoscale Materials - Properties and applications Basic Principles of spectroscopy and its applications for molecular structure	8

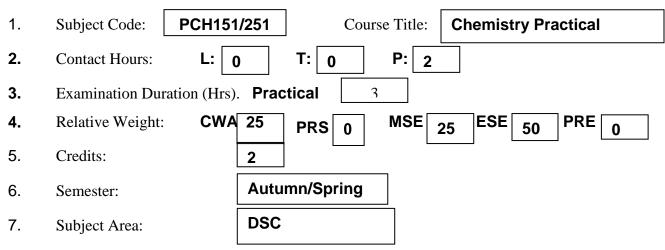
	WATER TECHNOLOGY	
Unit - II	Hardness of water: Causes, Types, Measurement, Boiler troubles: Sludges, Scales and Caustic Embrittlement Softening of water by L-S Process, Zeolite Process and Reverse Osmosis Process, Ion Exchange Process, Calgon Process Numerical Problems based on L-S Process, Zeolite Process and hardness of water. Introduction to the membrane concept for the treatment of microplastics from water	8
	POLYMERS	
	Polymers: Definition, degree of polymerization, functionality of monomer, Classification of polymers with examples, Types of polymerizations – addition and condensation polymerization with examples. Mechanism of addition polymerization.	8
	Plastics: Definition and characteristics- thermoplastic and thermosetting plastics, preparation, properties, and applications of PVC and Bakelite	
Unit -III	Fibers: Characteristics of fibers – preparation, properties and applications of Nylon and Dacron.	
	Conducting polymers: Characteristics and Classification of conducting polymers with examples.	
	Biodegradable polymers: Concept and advantages – Preparation of Polylactic acid and poly vinyl alcohol and their applications.	
	Liquid Crystalline Polymers: Characteristics, classification with examples and their applications.	
	FUELS AND RENEWABLE SOURCE OF ENERGY	
Unit –IV	Fuels Definition, Classification and Characteristics of a good fuel, Calorific value and its determination by Bomb Calorimeter, Numerical problems on Bomb Calorimeter,	
	Composition and uses of Natural gas, CNG, LPG. Renewable Energy Sources: Solar energy, wind energy, hydroelectric and geothermal. Biofuels as alternative sources of energy (biomass, biogas).	8
	ELECTROCHEMISTRY & ITS APPLICATIONS	
Unit-V	Electrode potential, standard electrode potential, factors affecting the electrode potential of a cell. Nernst equation: Electrochemical series and its application, Electrochemical cell: Daniel cell, Concentration cells, electrolyte concentration cell Numerical problems based on electrode potential and emf of a cell.	10
	Fuel Cells: Introduction, Principles, Classification, and application Corrosion its causes and effects, Theories of corrosion – Chemical & Electrochemical corrosion	

Text Books:

 <u>Sunita Rattan</u>, "Comprehensive Engineering Chemistry", S.K. Kataria& SonsDelhi, India, 2nd

Edition (2009)

- **2.** Shashi Chawala , "Theory and Practical's of Engineering Chemistry", DhanpatRai and Company, (Pvt) Ltd 3rd Edition (2012)
- **3.** Jain &Jain "A text book of Engineering Chemistry," Dhanpat Rai Publishing Company,


15th Edition New Delhi (2008)

Reference Books:

- **1.** J.D. Lee, "Concise Inorganic Chemistry", 5th Edition (1996)
- K. L. Kapoor "A text book of Physical Chemistry" Vol. 5, Macmillan India, 1st Edition (2004)
- **3.** Prof. K.N. Jayaveera, Dr.G.V.Subba Reddy and Dr.C. Ramachandraiah, "Chemistry for Engineers" McGraw Hill Higher Education Hyd.,(2009)
- 4. William Kemp, "Organic Spectroscopy", Palgrave Foundations, (1991).
- **5.** L.E.Foster, "Nanotechnology, Science Innovation & Opportunity", Pearson Education, 2007.
- **6.** Y.R. Sharma "Elementary Organic Spectroscopy: Principles and Chemical Applications", 1st Edition,
- 7. F.W.Bill, Meyer, A Text book of Polymer Chemistry, 3rd Edition 2009,
- **8.** Thirumala Chary and Laxminarayana, "Engineering Chemistry", Scitech Publishers, Chennai (2016).

GRAPHIC ERA (DEEMED TO BE UNIVERSITY), DEHRADUN

Name of Department: **Chemistry**

8. Pre-requisite: Basic Knowledge of Experiments in Chemistry

9. Course	• Analyze the water and oil quality parameter.
Outcomes:	 Understand the concept of viscosity, surface tension and their applications.
	• Analyze the ores and bleaching powder sample
	• Knowledge of pH metric and calorimetry and their application in industry.

10. Detailed Syllabus: Students must perform any twelve experiments:

UNIT	CONTENTS	CONTACT
		HRS
	To determine the alkalinity of the given water sample containing carbonate (CO_3^{2}) ions and bicarbonate (HCO_3^{-})	_
EXP- 1	ions by titrating it against standard HCI solution [N/10] using phenolphthalein and methyl orange as indicators.	2
EXP - 2	To determine the chloride ion (Cl ⁻) content in the given water sample by Argentometric method (Mohr's method) using N/50 AgNO ₃ as a standard solution and potassium chromate (K ₂ CrO ₄)	
	as an internal indicator.	2

EXP - 13	Determination of adsorption isotherm of acetic acid on activated charcoal	2
EXP – 12	To determine the Copper (Cu ⁺⁺) ion content in the given sample of copper ore (blue vitriol) by titrating it against standard N/30 sodium thiosulphate solution using starch as indicator by lodometric titration.	2
EXP – 11	To determine the rate constant of a reaction	2
EXP – 10	To determine the alkalinity of the given water sample containing carbonate (CO_3^2) ions and hydroxide (OH) ions by titrating it against standard HCl solution [N/10] using phenolphthalein and methyl orange as indicators.	2
EXP - 9	Synthesis of phenol-formaldehyde resin	2
EXP - 8	To determine the strength of unknown HCI solution by titrating it against N/10 NaOH solution with the help of pH meter.	2
EXP - 7	To determine the acid value of oil	2
EXP - 6	To determine the surface tension of the given sample solution by drop number method	2
EXP-5	To determine the ferrous ion (Fe ⁺⁺) content in given sample solution of Mohr's salt (FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O) by titrating it against standard N/30 potassium dichromate (K ₂ Cr ₂ O ₇) solution by using potassium ferricyanide K ₃ [Fe (CN) ₆] as an external indicator.	2
EXP-4	To determine the coefficient of viscosity of the given sample solution by Ostwald's viscometer (Viscosity of water = 0.0101 Poise).	2
EXP-3	To determine the temporary and permanent hardness of given water sample by titrating it against standard solution of M/100 Ethylene Diamine Tetracetic Acid (EDTA) using Eriochrome black-T (EBT) as an internal indicator.	2

Text Books:

- <u>Sunita Rattan</u>, "Comprehensive Engineering Chemistry", S.K. Kataria& SonsDelhi, India, 2nd Edition (2009)
- Shashi Chawala, "Theory and Practicals of Engineering Chemistry", DhanpatRai and Company, India 3rd Edition (2012)

Name of Department: **CHEMISTRY**

1.	Subject Code: TCH202	Course Title: Advanced Organic Chemistry
2.	Contact Hours: L:	3 T: 0 P: 0
3.	Examination Duration (Hrs)	Theory 3
4.	Relative Weight: CWA	25 PRS 0 MSE 25 ESE 50 PRE 0
5.	Credits:	3
6.	Semester:	Autumn/Spring
7.	Subject Area:	DSC

8. **Pre-requisite**: Basic and Advanced knowledge of Organic Chemistry

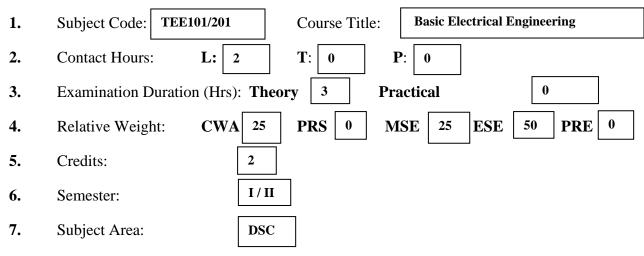
9. Course	• understand the basic knowledge of different techniques of purification of				
Outcomes:	organic compound				
	• explain the reaction mechanism in organic chemistry.				
	• illustrate concepts and knowledge on nanotechnology and its application				
	• Learn and apply the concepts of analytical chemistry for sample analysis				
	• discuss the knowledge of carbohydrates and their practical application to biotechnology and engineering.				

UNIT	CONTENTS	Contact Hrs
	PURIFICATION OF ORGANIC COMPOUNDS	
Unit - I	Crystallization sublimation, Distillation, Fractional distillation, distillation under reduced pressure, Steam distillation, Extraction with solvent, chromatography	4

r					
	(a) STRUCTURE OF ORGANIC COMPOUNDS				
Unit - II	Nature of covalent bond and its orbital representation. Hybridization, bond energy, polarity of bond & dipole moment of molecules, Isomerism				
	(b) ORGANIC REACTIONS AND THEIR MECHANISM				
	Bond fission, Inductive effect, hyperconjugation, electromeric, resonance effects and their significance; Types of reagents: electrophiles & nucleophiles, Reaction intermediates: carbocation, carbanion, carbenes, and free radicals- generation, properties and stability,	7			
	(c) Addition reactions, Substitution reactions, Elimination reactions in organic chemistry. Orientation in aromatic substitution reactions	7			
	(a) NANOMATERIALS	3			
Unit - III	Introduction, Green nanotechnology, Synthesis of nanoparticlesand its applications				
	(b) GREEN CHEMISTRY				
	Introduction, Twelve Principles of Green Chemistry, Adverse effects of chemicals, Practice of Green Chemistry				
	Analytical Chemistry: Basics and its applications				
Unit - IV	 a. Definition of Qualitative and quantitative analysis, volumetric and gravimetric analysis. b. Principle of volumetric analysis. Concept of pH, buffer solution and Henderson equation. Concept of strength and concentration of solution, Normality, Molarity, Molality and interconversion of strength, c. Types of volumetric analysis: Acid-base, Complexometric, redox and precipitation titration (Principle and examples). d. Principle and applications of the following methods: 	8			
	Chromatography: Introduction, principle & application of chromatography. Paper chromatography, thin layer				

	chromatography, column chromatography: silica and gel filtration. Thermoanalytical methods: Thermogravimetric Analysis, Thermometric Titrations Electroanalytical techniques: Electrogravimetry, Polarography and Voltametric Methods. Atomic Spectroscopy : Principle and application of atomic absorption spectroscopy and flame photometry.	
Unit - V	CARBOHYDRATES Definition, Classification, General Properties. Preparation of Glucose, its physical and chemical properties, Killiani Fischer synthesis, Ruff degradation	5
	Total	42

Textbooks:


- 1. Morrison & Boyd "Organic Chemistry",6th edition ,Pearson education
- 2. I.L.Finar, Organic Chemistry (Vol. I & II) 5th Edition 2009, Pearson Publication
- 3. Bahl and Bahl, "Advanced Organic Chemistry" by S. Chand& Company Ltd.

Reference Books:

- 1. F.W.Bill Meyer, "Text book of Polymer Chemistry, 3rd Edition 2009,W.J.Wiley India
- 2. Advanced Organic Chemistry by Bernard Mille
- 3. Organic Structural Spectroscopy by Joseph Lambert, Scott Gronert, Herbert Shurvell, David Lightner and Robert Graham Cooks
- 4. L.E.Foster, "Nanotechnology, Science Innovation & Opportunity", Pearson Education, 2007.

SEMESTER I & II

Name of Department: - Department of Electrical Engineering

8. Pre-requisite: Basic Knowledge of Physics and Mathematics

9. Course	CO1	Recall the concept of voltage, current, resistance and laws related to
Outcome:		electricity with reference to the electrical circuits/systems.
After successful	CO2	Understanding of fundamental laws and theorems used in the electrical
completion of this		circuits.
course, students	CO3	Application of network theorems/laws in electrical circuit.
will be able to:	CO4	Understanding of various electrical safety components and electrical
		wiring.
	CO5	Application of earthing/grounding.
	•	

Sl. No.	Content	Contact Hours		
1	DC Circuit: Concepts of current, resistance, E.M.F., potential difference, Ohm's law, Simplifications of networks using series and parallel combinations and star-delta conversions, Kirchhoff's law, Superposition, Thevenin, Norton, Maximum Power Transfer theorem and their applications for network solutions.	10		
2	Single Phase AC: Introduction of Single-Phase AC, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Single phase AC through R, L, C, and series combination of RLC.			
3	Electrical Installations and Illumination: Wire and cables for internal wiring, switches and circuits (Two-way switch, staircase wiring, go down wiring, double pole double throw switch), type of electrical wiring, Switch Fuse Unit (SFU), MCB, MCCB, Earthing concept and methods of earthing.	4		
	Total	24		

SL.	Name of Authors/Books/Publishers	Year of
No.		Publication/Reprint
	Text Books	
1.	D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.	2010
2.	D.C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.	2009
3.	V. N Mittle and Arvind Mittle, "Basic Electrical Engineering" Tata McGraw-Hill Education Pvt. Ltd. (2005)	2005
	Reference Books:	
1.	L.S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.	2011
2.	V.D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.	1989
3.	E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.	2010
4	L.S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.	2011

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term Exam
-----	--------------------	--

	-	-		-			
1.	Subject Code:	PEE 151/251	Course Tit	le:	Basic Electric	cal Engineering Lab	I
2.	Contact Hours:	L: 0	T: 0	P:	2		
3.	Examination Dur	ration (Hrs): Theo	ory	0	Practical	2	
4.	Relative Weight:	CWA 25	PRS 0] MSE	25 ESE	50 PRE 0	
5.	Credits:	1					
6.	Semester:		I/II				
7.	Subject Area:		DSC				

Name of Department: **Department of Electrical Engineering**

8. Pre-requisite: Basic Knowledge of Experiments in Physics

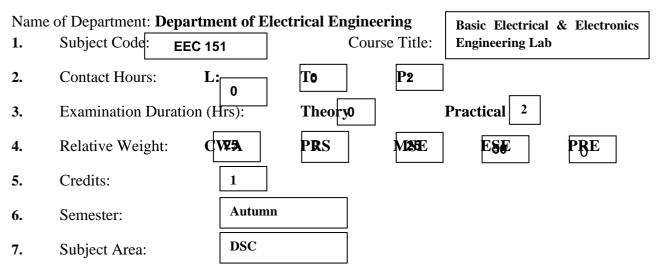
9. Course Outcome: CO		Apply the knowledge of circuit laws and theorems and verify the knowledge	
After successful		through practical experimentation.	
completion of this	CO2	Correlate the knowledge of theoretical concepts or phenomenon in context to	
course, students will	the real time applications of AC systems (wiring/switches/lamps etc.) and make		
be able to:		suitable assumptions to study it through lab experiment.	
	CO3	Coordinate with team members to carry out the procedure with precision.	
	CO4 Report the experimental results in a professional way with practical comments		
		on the application to field/ industry requirements.	

Sl. No.	Contents				
1.	To verify the Kirchhoff's Voltage Law (KVL) in DC Circuit.				
2.	To verify the Kirchhoff's Current Law (KCL) in DC Circuit				
3.	To Verify Superposition Theorem in DC Circuit.				
4.	To Verify Thevenin Theorem in DC Circuit.				
5.	To Verify Norton Theorem in DC Circuit.				
6.	To Verify Maximum Power Transfer Theorem in DC Circuit.				
7.	To find out the meter constant of a single-phase energy meter				
8.	To wire for a Stair-case arrangement using a two-way switch.				
9.	To measure power in a single-phase ac circuit by using wattmeter.				
10.	To draw the current versus frequency characteristics in RLC series circuit.				
11.	To study various electrical accessories and machines parts (cut set model)				

11. Mode of Evaluation	Viva / Mid Term Lab Exam / End Term Lab Exam
------------------------	--

SEMESTER I (Biotech Group)

Name of Department: - Department of Electrical Engineering														
1.	Subject Code: EEC 101			Course Title:			Basic Electrical & Electronics Engineering							
2.	Contact Hours:		L: 3	5	T :	1	P :	0					_	
3.	Examination D	uratio	n (Hrs)	:	The	Theory 3 Practical 0								
4.	Relative Weight: CWA		25	PRS	5 0	M	SE	25	ESE	50	PRE	0		
5.	Credits: 4										_			
6.	Semester:			Autum	in									
7.	Subject Area:			DSC										
8.	Pre-requisite:		Basic	Knowl	edge o	of Matl	nematio	cs an	nd Ph	ysics				
9. Cou	irse	CO1	Reca	lling the	e conc	epts o	f basic	elec	ctric o	circuits	and re	ememb	ering the	3
Outco	me:		theor	rems to	solve	DC Ci	rcuits.							
After		CO2	Sum	marize	the var	rious c	haracte	eristi	ics of	AC Ci	rcuits.			
succes	sful	CO3	3 Applying the concepts of magnetic circuits to understand thebasic											
comple	etion		chara	cteristic	es of si	ingle-p	hase T	rans	sform	er.				
of this CO4 An		Analy	Analyzing the basics of semiconductor devices used for electronic											
course, con		comp	components.											
students CO5		Evaluating the basic concept of PN junction diode and itsapplications in												
will be able			rectifier circuits and DC power supply.											
		CO6	Compiling Bipolar Junction Transistor (BJT) from its basicconcepts an various biasing circuits.				pts and							

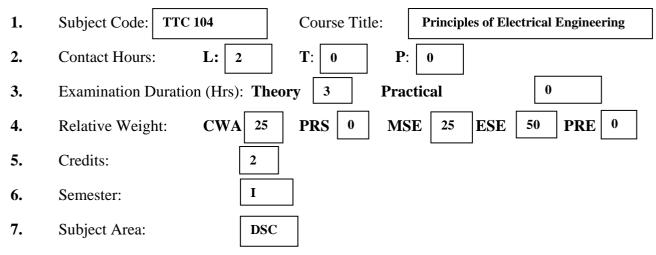

Sl. No.	Contents	Contact Hours
Unit -1	D.C. Network Theory: Circuit theory concepts-KCL, KVL, mesh and node analysis, Network Theorems- Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum Power Transfer theorem, Star Delta transformation.	07
Unit -2	A.C. Circuit Analysis: Sinusoidal and phasor representation of voltage and current, single phase a.c. circuit behavior of resistance, inductance and capacitance and their combination in series & parallel, power factor, series parallel resonance and quality factor.	07
Unit -3	Magnetic Circuits:	06

	Introduction, series-parallel magnetic circuits comparison, Eddy currentsand	
	Hysteresis losses.	
	Single Phase Transformer:	
	Principle of operation, classification, phasor diagram at no load, efficiencyand	
	all-day efficiency of transformer.	
	Semiconductor Basics:	
	Insulators, semiconductors and metals, Mobility and conductivity, Intrinsicand extrinsic semiconductors and charge densities in semiconductors, Fermi Level, current components in semiconductors, continuity equation. Junction	
Unit -4	Diode and Its Applications:	10
	PN Junction diode - characteristic and analysis, Diode Models, Rectifiers and	
	filter circuit: Half wave, full wave and Bridge rectifier circuits and their	
	analysis, L, C and Pi filters, Zener Diode, Basic regulator supply using	
	Zener diode, Design of Regulator circuits	
	TRANSISTORS:	
	Construction and characteristics of bipolar junction, transistors (BJT's)- Comm.	
Unit –5	Base, Comm. emitter, Comm. Collector configuration, Transistor biasing and	8
	bias stabilization: - the operating point, stability factor, analysis of fixed base	0
	bias, collector to base bias, Emitter resistance bias	
	circuit and self-bias circuit.	
	Total Hours	38

-

Sl. No.	Name of Authors/Books/Publishers	Year of Publication / Reprint
1	D.P. Kothari and I. J. Nagrath, " Basic Electrical Engineering ", Tata McGraw Hill.	2010
2	D.C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.	2009
3	V. N Mittle and Arvind Mittle, " Basic Electrical Engineering " Tata McGraw-Hill Education Pvt. Ltd.	2005
4	Jacob Millmann & Halkias, "Integrated Electronics", 2 nd Edition, TMH,	2010
5	Boylestad and L. Robert and Nashelsky Louis, "Electronics Devices and Circuits Theory", 9th Edition., PHI/Pearson Education.	2010

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End TermExam /
		Lab Exam


8. Pre-requisite: Physics.

9. Course	CO1	Illustrate and Verification of various laws in DC circuit
Outcomes:	CO2	Illustrate and Verification of various theorems in DC circuit
	CO3	Demonstrate various types of diodes and their characteristics
	CO4	Analysis of various types of analog and digital electronic circuits

Sl. No.		Contents						
1.	To verify Kirchhoff's	To verify Kirchhoff's voltage law (KVL) in D.C. circuits						
2.	To verify Kirchhoff's	To verify Kirchhoff's current law (KCL) in D.C. circuits						
3.	To verify superposition	n theorem for DC circuits.						
4.	To verify Thevenin's t	heorem for DC circuits						
5.	To verify Norton's the	orem for DC circuits '						
6.	To verify maximum p	ower transfer theorem in DC circuits.						
7.	Study of PN junction of	Study of PN junction diode and its characteristics						
8.	Study of ZENER junction diode and its characteristics							
9.	Study of half wave rectifier with and without capacitive filter							
10.	Study of full wave rectifier with and without capacitive filter							
11.	Study of BJT in CB /C	Study of BJT in CB /CE configuration						
12.	Verification of basic and derived gates.							
13.	Realization of basic gates through universal gates.							
11.	Mode of Evaluation Viva / Mid Term Lab Exam / End Term Lab Exam							

SEMESTER I

Name of Department: - **Department of Electrical Engineering**

8. Pre-requisite: Basic Knowledge of Physics and Mathematics

9. Course	CO1	Recall the concept of voltage, current, resistance and laws related to
Outcome:		electricity with reference to the electrical circuits/systems.
After successful	CO2	Understanding of fundamental laws and theorems used in the electrical
completion of this		and magnetic circuits.
course, students	CO3	Application of network theorems/laws in electrical and magnetic
will be able to:		circuits.
	CO4	Understanding of various electrical safety components and electrical wiring.
	CO5	Application of earthing/grounding.
	CO6	Understanding of measuring devices and sensors

Sl. No.	Content	Contact Hours
1	Introduction: Concept of Potential difference, voltage, current, Fundamental linear passive and active elements to their functional current- voltage relation, Terminology and symbols in order to describe electric networks, voltage source and current sources, ideal and practical sources, concept of dependent and independent sources, Kirchhoff-s laws and applications to network solutions using mesh and nodal analysis, Concept of work, power, energy, and conversion of energy.	5
2	DC Circuits: Current-voltage relations of the electric network by mathematical equations to analyze the network (Thevenin's theorem, Norton's Theorem, Maximum Power Transfer theorem) Simplifications of networks using series-parallel, Star/Delta transformation. Superposition theorem.	6
3	AC Circuits: AC waveform definitions, form factor, peak factor, study of R-L, R-C,RLC series circuit, R-L-C parallel circuit, phasor representation in polar and rectangular form, concept of impedance, admittance, active, reactive, apparent and complex power, power factor, 3 phase Balanced AC	5

	Circuits $(\lambda - \Delta \& \lambda - \lambda)$.	
4	Magnetic Circuit and Single Phase Transformer: Magnetic circuit, Single phase transformer, principle of operation, EMF equation, voltage ratio, current ratio, KVA rating, efficiency and regulation.	4
5	Measurements and Sensors: Introduction to measuring devices/sensors and transducers (Piezoelectric and thermo-couple) related to electrical signals, Elementary methods for the measurement of electrical quantities in DC and AC systems (Current & Single-phase power). Electrical Wiring and Illumination system, Types of Wiring System & Wiring Accessories, Necessity of earthing, Types of earthing, Safety devices & system.	4
	Total	24

SL.	Name of Authors/Books/Publishers		
No.			
	Text Books		
1.	<i>Electric Machinery</i> , (Sixth Edition) A. E. Fitzgerald, Kingsely Jr Charles, D. Umans Stephen, Tata McGraw Hill.		
2.	A Textbook of Electrical Technology, (vol. I), B. L. Theraja, Chand and Company Ltd., New Delhi.		
3.	Basic Electrical Engineering, V. K. Mehta, S. Chand and Company Ltd., New Delhi.		
4	<i>Theory and problems of Basic Electrical Engineering,</i> (Second Edition), J. Nagrath and Kothari, Prentice Hall of India Pvt. Ltd.		
	Reference Books:		
1.	<i>Basic of Electrical Engineering</i> , T. K. Nagsarkar and M. S. Sukhija, Oxford University Press. T. K. Nagsarkar and M. S. Sukhija, Basic of Electrical Engineering, Oxford University Press, 2011.		
2.	Introduction to Electrodynamics, D. J. Griffiths, (Fourth Edition), Cambridge University Press.		
3.	<i>Engineering Circuit Analysis,</i> William H. Hayt & Jack E. Kemmerly, McGraw-Hill Book Company Inc.		
4	<i>Fundamentals of Electrical and Electronics Engineering</i> , Smarjith Ghosh, Prentice Hall (India) Pvt. Ltd.		

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term Exam	
-----	--------------------	--	--

Name of Department: **Department of Electrical Engineering**

1.	Subject Code:	PTC 104	Course Title	e:	Electrical Er	ngineering Lab
2.	Contact Hours:	L: 0	T: 0	P:	2	
3.	Examination Dur	cation (Hrs): Theo	ry (•	Practical	2
4.	Relative Weight:	CWA 25	PRS 0	MSE	25 ESE	50 PRE 0
5.	Credits:	1				
6.	Semester:		Ι			
7.	Subject Area:		DSC			

8. Pre-requisite: Basic Knowledge of Experiments in Physics

9. Course	CO1 Apply the knowledge of circuit laws and theorems and verify the knowledge
Outcome:	through practical experimentation.
After	CO2 Correlate the knowledge of theoretical concepts or phenomenon in context to
successful	the real time applications of AC systems (wiring/switches/lamps etc.) and
completion of	make suitable assumptions to study it through lab experiment.
this course,	CO3 Coordinate with team members to carry out the procedure with precision.
students will	CO4 Report the experimental results in a professional way with practical comments
be able to:	on the application to field/ industry requirements.

Sl. No.	Contents		
1.	To verify the Kirchhoff's Voltage Law (KVL) in DC Circuit.		
2.	To verify the Kirchhoff's Current Law (KCL) in DC Circuit		
3.	To Verify Superposition Theorem in DC Circuit.		
4.	To Verify Thevenin Theorem in DC Circuit.		
5.	To Verify Norton Theorem in DC Circuit.		
6.	To Verify Maximum Power Transfer Theorem in DC Circuit.		
7.	To find out the meter constant of a single-phase energy meter.		
8.	To wire for a Stair-case arrangement using a two-way switch.		
9.	To measure the power and power factor of a three-phase balanced circuit by using two		
	wattmeter method.		
10.	To draw the current versus frequency characteristics in RLC series circuit.		
11.	To measure power in a single-phase ac circuit by using wattmeter.		
12.	To study various electrical accessories and machines parts (cut set model)		
11.	Mode of Evaluation Viva / Mid Term Lab Exam / End Term Lab Exam		

SEMESTER I/II

Name of Department: - Electronics and Communication Engineering
Basic Electronics Engineering
Basic Electronics Engineering

1.	Subject Code: TEC 101	201 Course Title:	
2.	Contact Hours: L:	T: 0 P: 0	
3.	Examination Duration (Hr	6): Theory 3 Practical 0	
4.	Relative Weight: CIE	25 MSE 25 SEE 50	
5.	Credits:	3	
6.	Semester:	First/Second	
7.	Category of Course:	DSC	

8. Pre-requisite: Physics

9. Course	After completion of the course the students will be able to:			
Outcome:	 CO1: Remember operations on number systems and understand concepts of digital circuits. CO2: Understand the basics of semiconductors and PN junction diode. CO3: Apply the basics of PN junction diode in rectifier circuits and DC power supply. CO4: Analyze Bipolar Junction Transistor (BJT) from its basic concepts and biasing circuits. CO5: Evaluate the performance of operational amplifier (OP-amp) from its performance parameters like gain, CMRR, offset values etc. CO6: Design and develop various basic electronic circuits. 			

SI. No.	Contents	
1	Unit 1: Number Systems & Boolean Algebra: Number systems and their conversion, Logic gates, Boolean algebra, Implementation of basic gates using universal gates, Implementation of logic functions using basic gates & universal gates, SOP & POS form of logic expression, Canonical form, Conversion from SOP & POS form to canonical form, Simplification of Boolean function: Algebraic method, Karnaugh map method (two, three & four variable K-map with don't care condition).	10
2	Unit 2:	8

	Basics of Semiconductor Devices:	
	Energy band theory: Classification of solids based on energy band diagram, Semiconductors; Intrinsic semiconductors, Extrinsic semiconductors– P-type and N-type, Electrons and holes in intrinsic and extrinsic semiconductors, Mobility and conductivity, Mass action law, Charge densities in semiconductors, Drift and diffusion current, P-N Junction; Formation of depletion region, V-I characteristics of P-N junction diodes, Diode breakdown mechanism.	
	Unit 3:	
	AC to DC Conversion:	
3	Introduction to DC power supply, Rectifiers circuit: Half wave, Center tapped full wave and Bridge rectifier circuits. Rectifier performance parameter analysis, Filter circuits: L, C, and Pi filters, Zener diode, Zener diode as a voltage regulator.	8
	Unit 4:	
4	Basics of Bipolar Junction Transistor (BJT): Construction of bipolar junction transistors (BJT), NPN and PNP type transistor, Characteristics; Common base, Common emitter, Common collector configuration, Operating point.	8
	Unit 5:	
	Introduction to Operational Amplifiers:	
5	Introduction to integrated circuits; Advantages and limitations, Characteristics of an ideal Op-amp, Introduction of 741 IC. Inverting and non-Inverting Op-amp circuits, Summing amplifier, Difference amplifier, Voltage follower.	6
	Total	40

SL.	Name of Authors/Books/Publishers	Edition	Year of Publication /
No.			Reprint
	Textbooks		
1.	Jacob Millmann & Halkias, " <i>Integrated Electronics</i> ", TMH, 2 nd Edition, 2009.	2 nd	2009
2.	M. Morris Mano, Michael D. Ciletti, " <i>Digital Design</i> ",	5 th	2012
	Pearson Education, 5 th Edition, 2012.		
	Reference Books		
1.	Boylestad and L. Robert and Nashelsky Louis,	10 th	2009
	"Electronics Devices and Circuits Theory", Pearson		
	Education, 10 th Edition, 2009.		
2.	S. Salivahanan and S. Arivazhagan, "Digital Circuits and	5 th	2008
	Design", Oxford University Press, 5 th Edition, 2018.		

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term Exam
-----	--------------------	--

SEMESTER I/II

Name of Department: - Electronics and Communication Engineering

1.	Subject Code: PEC 15	1/251	Course Title:Basic Electronics Engineering Lab
2.	Contact Hours: L:)	T: 0 P: 2
3.	Examination Duration (Hr	s.):	Theory 0 Practical 3
4.	Relative Weight: CIE	25	MSE 25 SEE 50
5.	Credits:	1	
6.	Semester:	First/	Second
7.	Category of Course:	DC	

8. Pre-requisite: Physics

9. Course	After completion of the course the students will be able to:		
Outcome:	 CO1: Identify and understand active & passive components along with various measuring instruments. CO2: Verify truth table of logic gates. CO3: Analyse the characteristics of diodes and transistors. CO4: Implement different electronics circuits using operational amplifier and logic gates. 		

SI.	List of problems for which student should develop	Contact	
No.	program and execute in the Laboratory		
1.	Familiarization of electronics measuring instrument and components.	2	
2.	Measure the voltage and frequency using a DSO.	2	
3.	Study and verification of the truth table for logic gates.	2	
4.	To design and verify the truth table for logic gates using NOR gate.	2	
5.	To design and verify the truth table for logic gates using NAND gate.	2	
6.	Study V-I characteristics of PN junction diode and determine the static and dynamic resistance from the characteristic curve.	2	
7.	Study of a Half wave rectifier circuit with and without capacitor filter.	2	
8.	Study of a Centre tapped full wave rectifier circuit with and without capacitor filter.	2	

Study of a bridge full wave rectifier circuit with and without capacitor filter.	9.			
Study V-I characteristics of Zener diode.	10.			
Study the input and output characteristics of common base (CB) transistor.	11.			
Study the input and output characteristics of common emitter (CE) transistor.	12.			
Total				
Innovative Experiments				
Study the input and output characteristics of common collector (CC) transistor.	13.			
Design and verification of Inverting and non-inverting amplifier using Op-Amp IC.	14.			
As suggested by the concerned faculty/lab in charge.	15.			
	capacitor filter. Study V-I characteristics of Zener diode. Study the input and output characteristics of common base (CB) transistor. Study the input and output characteristics of common emitter (CE) transistor. Total Innovative Experiments Study the input and output characteristics of common collector (CC) transistor. Design and verification of Inverting and non-inverting amplifier using Op-Amp IC.			

12.	Mode	of	Test / Quiz / Assignment / Mid Term Exam / End
	Evaluation		Term Exam

SEMESTER I and II

Name	Name of Department: - Mechanical Engineering					
1.	Subject Code	: PME 15	1/251	Cours	e Title:	Workshop and Manufacturing
2.	Contact Hour	s: L:	1 T:	0	P: 4	Practices
3.	Examination	Duration (Hr	s): The	eory 3	Pr	actical 0
4.	Relative Wei	ght: CIE	25 PR	S 0	MSE 25	SEE 50 PRE 0
5.	Credits:		3			
6.	Semester:		Ι			
7.	Category of C	Course:	SEC			
8.	Pre-requisite:	Basi	c Grammar			
9. Cou Outco	ourse come**:After completion of the course the students will be able to: CO1: To identify various conventional, non-conventional and automated manufacturing techniques. 		-conventional and actices used for the s like carpentry, ring in fabrication of ed for fabrication of			

** Describe the specific knowledge, skills or competencies the students are expected to acquire or demonstrate.

SI.	Contents		
No.		Hours	
1	Introduction to Manufacturing Introduction to manufacturing, 3M's of manufacturing – man, machine and material, Types of manufacturing process, Manufacturing shops – machine shop, fitting shop, carpentry shop, welding shop, sheet metal shop, black smith shop, foundry shop, Introduction to advance manufacturing, Safety and precaution in workshop.	5	

2	 Machine Shop: Introduction to machining process, Measuring and marking tools used in machine shop, Part of lathe and drilling machine, Working principle of lathe and drilling, Tools use in lathe, Materials. 1. To make work piece using facing and turning operation. 2. To make work piece using step turning and thread making operation. 	4
3	 Foundry Shop: Introduction to foundry, Pattern material-wood, cast iron, brass, aluminum, waxes etc., Types of patterns, Types of tools, Mounding sands – green sand, dry sand, loam sand, facing sand, etc., Sand casting-Sand preparation, mould making, melting, pouring and cleaning. 3. To prepare mould of casting using a single piece pattern. 4. To prepare mould of casting using a split pattern. 	4
4	 Sheet Metal Shop: Introduction to sheet metal shop, Tools use in sheet metal shop, Types of operations, Fabrication of daily use items such as funnel tray, etc. 5. To make a funnel using sheet metal forming (Material: 24 SWG) of given dimensions. 6. To make a square tray using sheet metal forming (Material: 24 SWG) of given dimensions. 	3
5	 Fitting Shop: Introduction to fitting, Types of tools used in fitting shop for measuring, marking, cutting etc., callipers and Vernier calliper, materials used in tools. 7. To make a square piece of mild steel of given dimensions. 8. To make a fitting job of given profile and dimensions. 	4
6.	 Welding Shop: Introduction to welding, Classifications of joining process, Arc welding process-power source, electrodes, edge preparation, Different types of joints. Electric arc welding, Metal inert gas welding, Tungsten inert gas welding. 9. To prepare a butt (Single-V)/ fillet joint through electric arc welding. 10. To prepare a butt (Single-V)/ fillet joint through TIG/MIG welding. 	
7.	Carpentry Shop:	
7.	Introduction to carpentry shop, Wood and its type, Classification of timber, Seasoning and preservation of wood, Description and	

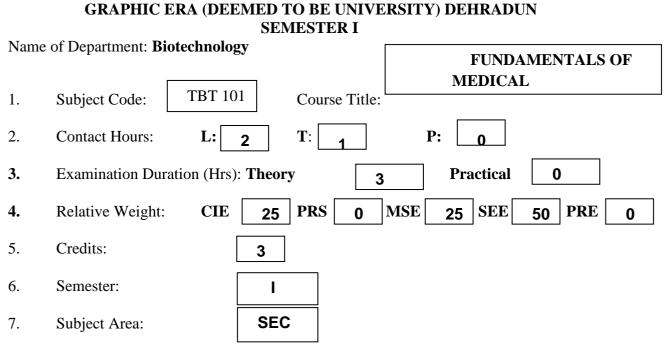
	applications of the various tools used in carpentry, Different joints and their practical uses.	
	11.To make corner-lap/ center – lap joint. 12.To make a mild steel chisel/ nail.	
	Black smith shop:	
8.	Introduction to black smithy shop, Tools used in black smithy shop, Types of operations, Properties of metal- ductility, malleability, strength, etc.	
	13. To make a aquare of round mild steel bar. 14. To make a mild steel chisle/ nail.	
	Non-conventional and Automated Manufacturing Techniques:	
9.	15. Demonstration of Non-conventional fabrication techniques-3D Printing, Laser Cutting.	
	16. Demonstration of Automated manufacturing techniques-CNC, Master CAM software, Application of Industrial Robot, Assemble line in Manufacturing Execution System.	
	Total	30

SEMESTER I and II

Name of Department: Mechanical Engineering

1.	Subject Code: PME 153-253 Course Title: Engineering Graphics & Design
2.	Contact Hours: L: 1 T: 0 P: 4
3.	Examination Duration (Hrs): Theory 0 Practical 3
4.	Relative Weight: CWA 25 PRS 0 M 25 50
5.	Credits: 3
6.	Semester: Autumn/Spring
7.	Subject Area: DSC
8.	Pre-requisite: No prerequisites

9. Course Outcomes: Upon completion of this course, students will be able to


CO1. Construct Engineering drawings as per BIS conventions manually and using CAD software to prepare Orthographic projections of Points and Lines.
CO2. Use the knowledge of Orthographic projections to represent Engineering concepts of Planes.
CO3. Develop Projections of Solids and lateral surfaces of solids by analyzing the given problems.
CO4. Construct isometric drawings after analyzing the combination of simple solids

10. Detailed Syllabus

S.L. No.	CONTENTS		
1	Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar, and description of most commonly used tool bars, navigational tools. Coordinate system and reference planes. Definitions of HP, VP, RPP& LPP. Creation of 2D/3D environment. Selection of drawing size and scale. Commands and creation of lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity.	10	

	Total	75
CAD Softwares:	 AUTOCAD CREO 2.0 	
6	Demonstration of a Simple Team Design Project that Illustrates Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid- modeling software for creating associative models at the component and assembly levels.	10
5	Isometric Projections: Principles of Isometric projection - Isometric Scale, Isometric Views, Conventions, Isometric views of planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice - Versa.	10
4	Development of lateral surfaces of solids: Sections of right regular prisms, pyramids, cylinders and cones resting with base on HP. Development of lateral surfaces of above solids, their truncations.	10
3	Projections of Solids: Projections of right regular prisms, pyramids and cones with axis inclined to both the planes. (Solids resting on HP only)	10
2	 Dimensioning, line convention, material conventions and lettering. Computer Aided Design(CAD) software: Modeling of parts and Assemblies. Orthographic projections of points, lines and planes: Introduction, Definitions - Planes of projection, reference line and conventions employed. First angle and Third angle projection. Projections of points in all the four quadrants. Projection of lines (located in first quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes (No application problems) Projection of planes: triangle, square, rectangle, pentagon, hexagon, and circle, planes in different positions by change of position method only (No problems on punched plates and composite plates.) 	25

SL. No.	Name of Authors/Books/Publishers	Year of				
		Publication/Reprint				
	Text Books					
1.	Engineering Graphics- K.R. Gopalakrishna, 32 nd edition, - Subash Publishers, Bangalore.	2005				
2.	Computer Aided Engineering Drawing – S. Trymbaka Murthy, - International Publishing house Pvt. Ltd., New Delhi, 3 rd revised edition.	2006				
	Reference Books					
1.	Engineering Drawing- N.D. Bhatt and V.M. Panchal, 48th edition, Charotar publishing House, Gujarat.	2005				

- 8. Pre-requisite: Basic Science.
- 9. Course Objectives: The objective of this course is to provide a basic understanding of biological mechanisms of living organisms from the perspective of engineers. In addition, the course is expected to encourage engineering students to think about solving biological problems with engineering tools.

10. Course Outcome:

sm of fungal				
iungal				
ungal				
CO3: Understanding the concept of immune system and their correlation with				
Microbes.				
CO4: Utilize biotechnology tools in medical therapeutic and summarize the				
diagnostic techniques for common human diseases.				
edical				
Z				

UNIT	Contents	Conta
		ct
		Hou

		rs
Unit - I	 Commensal & Pathogenic Bacteria Normal microflora of human body: Skin, Respiratory system and Genitourinary tracts. Source of infection, mode of spread and portals of entry. Common pathogenic bacteria: Introduction of morphology, characterization, pathogenicity, lab diagnosis, prophylaxis of <i>Staphylococcus, Streptococcus, Neisseria, Corynebacterium, Bacillus, Clostridium, Mycobacteria, Hemophilus, Escherichia coli, Pseudomonas.</i> 	8
Unit - II	 Introduction to Pathogenic Fungi & Viruses Fungi: Introduction to morphology, symptoms, lab diagnosis and prevention of Mycoses. Viruses: Morphology, pathogenicity, prophylaxis, Diagnosis of viruses: Herpes, viruses, Orthomyxxovirus, Polio viruses, Hepatitis viruses; Rabies viruses, Human immunodeficiency viruses, COVID -19 viruses. 	8
UNIT III	Immunology Components of Immune system: Types of immunity, barriers of natural immunity, cells and organs of immune system, properties of antigen and antibody, interaction of antigens with various immune cells and organs, types of antibodies and their significance in host-pathogen interaction.	8
Unit – IV	Management and Quality Control of Medical BiotechnologyLaboratorySpecimen Collection: Collection of clinical specimens from patients, clinics, hospitals, for diagnosis and processing, training of medical biotechnologist to handle epidemics.Quality Control: Selective cultural media, identification by special tests, biochemical reactions and sero-typing of pathogenic bacteria. Antibiotic 	10
Unit –V	Applications of Medical Biotechnology Tools and techniques: Hybridoma technology, biopharming-subunit vaccines, DNA vaccines, recombinant vaccines, therapeutic enzymes, basic biomedical tools in diagnosis, treatment, prevention of diabetes (Insulin production), cancer (Detection of cancer antigens), transplantation.	8
	TOTAL LECTURES	42

S.No.	Name of Authors/Books/Publishers	Year of Publication/ Reprint
	Text Books	
1.	Microbiology 10th Edition. Prescott, L.M.; Harley, J.P. and Klein, D.A. (2013) McGraw-Hill Education; USA.	2017
2.	Biology for Engineers. GK Suraishkumar, Oxford Higher Education, Oxford University Press.	2019
3.	Biomedical instrumentation, Technology and applications, R. Khandpur, McGraw Hill Professional, 2004	2004
4.	Kuby Immunology. Thomas J. Kindt, Barbara A. Osborne,, Richard Goldsby. W. H. Freeman, 8 th edition	2018
5.	Ananthanarayan and Paniker's Textbook of Microbiology, The Orient Blackswan; 10th edition.	2017
	e-	
1.	Resources NDL <u>https://ndl.iitkgp.ac.in/homestudy/science</u>	2020
2.	https://epgp.inflibnet.ac.in/ (e PG-Pathshala)	2020
3.	http://ugcmoocs.inflibnet.ac.in/ (UGC Moocs)	2020
4.	https://swayam.gov.in/ (Swayam)	2020

SEMESTER II

Name of Department: - HUMANITIES AND SOCIAL SCIENCES

1.	Subject Code: TTC 203			Cour	se Title	e: F	Fundar	nentals	s of Ec	conomics
2.	Contact Hour	2 T	0	P: (0					
3.	Examination	Duration (Hr	s): T	heory 3		Pra	ctical	0		
4.	Relative Weig	ght: CIE	25 P	RS 0] MSE	25	SEE	50	PRE	0
5.	Credits:		2							
6.	Semester:		II							
7.	Category of C	Course:	DC							
8.	Pre-requisite	: Basio	C Knowled	ge of Ecor	nomics					
	 8. Pre-requisite: Basic Knowledge of Economics 9. Course Outcome: After completion of the course the students will be able to: CO1: Define the basic principles of microeconomics and macroeconomics theory. CO2: Understand the efficiency and equity implications of market interference, including government policy. CO3:Demonstrate the factors determining gross domestic product, employment, the general level of prices, and interest rates in the economy. CO4: Analyze economic problems and prescribe solutions. CO5: Evaluate how economic concepts can be applied to analyze real life situations. CO6: Create ability to comprehend the interaction between domestic economy and the rest of the world. 									
10.	10. Details of the Course:									

SI. No.	Contents	Contact Hours
	Principles of Demand and Supply - Supply Curves of Firms - Elasticity of	
1	Supply; Demand Curves of Households - Elasticity of Demand;	8
	Equilibrium and Comparative Statics (Shift of a Curve and Movement	

	along the Curve); Welfare Analysis - Consumers' and Producers' Surplus - Price Ceilings and Price Floors.	
2	Consumer Behaviour - Axioms of Choice - Budget Constraints and Indifference Curves; Consumer's Equilibrium - Effects of a Price Change, Income and Substitution Effects -Derivation of a Demand Curve; Applications - Tax and Subsidies - Intertemporal Consumption - Suppliers' Income Effect.	9
3	Theory of Production - Production Function and Iso-quants - Cost Minimization; Cost Curves - Total, Average and Marginal Costs - Long Run and Short Run Costs; Equilibrium of a Firm Under Perfect Competition; Monopoly and Monopolistic Competition.	9
4	National Income and its Components - GNP, NNP, GDP, NDP; Consumption Function; Investment; Simple Keynesian Model of Income Determination and the Keynesian Multiplier; Government Sector - Taxes and Subsidies; External Sector - Exports and Imports.	9
5	Money - Definitions; Demand for Money -Transactionary and Speculative Demand; Supply of Money - Bank's Credit Creation Multiplier; Integrating Money and Commodity Markets - IS, LM Model; Business Cycles and Stabilization - Monetary and Fiscal Policy - Central Bank and the Government; The Classical Paradigm - Price and Wage Rigidities - Voluntary and Involuntary Unemployment.	10
	Total	45

SL.	Name of Authors/Books/Publishers/Place of	Edition	Year of Publication
No.	Publication		/ Reprint
	Textbooks		
1.	N. Gregory Mankiw- Economics: Principles and	4 th	2007
	Applications, Cengage Learning India Private	Edition	
	Limited.		
2.	Karl E. Case and Ray C. Fair-Principles of	8 th	2007
	Economics, Pearson Education Inc.	Edition	
3.	H.L.Ahuja -Principles of Microeconomics, S Chand	22th	2016
	Publications.	Edition	

4.	F.Dornbusch & J. Startz- Macroeconomics,	7 th	2010
	McGraw Hill.	Edition	
5.	H.L. Ahuja- Macroeconomics Theory and Policy, S	20 th	2016
	Chand Publications.	Edition	
	Reference Books		
1.	A.Koutsoyiannis- Modern Microeconomics,	2 nd	1979
	Macmillan Education U.K.	Edition	
2.	M. L. Jhingan - Macro Economic Theory, McGraw	13 th	2016
	Hill.	Edition	
3.	N.G. Mankiw- Macroeconomics, Worth Publishers.	7 th	2010
		Edition	

12.	Mode	of	Test / Quiz / Assignment / Mid Term Exam / End Term Exam
	Evaluation		

SEMESTER I/II

Name of Department: - Environmental Science

1. Subject Code:	TEV 101/201	Course Title: Environmental Science				
2. Contact Hours:	L: 2	T: 0 P: 0				
3. Examination Du	3. Examination Duration (Hrs): Theory <u>3</u> Practical <u>0</u>					
4. Relative Weight	CIE -	PRS - MSE - SEE 100 PRE -				
5. Credits:	0					
6. Semester:	I					
7. Category of Cou	irse: Value	e Addition Course				

8. Pre-requisite: General Science

9. Course	After completion of the course the students will be able to:
Outcome**:	1. Create environmental awareness and knowledge.
	2. Encourage participation in environmental conservation practices.
	3. Develop critical thinking and apply those to the analysis of a problem or question related to the environment.
	4. Evaluate impact of various human induced activities on the environment.
	5. Design possible solutions to the real environmental problems.
	6. Apply research and innovation related with different aspects of environmental science.

S.No.	Contents	Contact Hours
1	 Environmental Science and Ecosystem a. Definition of Environmental Science, multidisciplinary nature, Objective, scope and importance. b. Concept of an ecosystem, structure and function, energy flow, ecological succession, food chains, food webs, ecological pyramids. c. Introduction, types, characteristic features, structure and function of the following ecosystem: 	8

	 Forest ecosystem Grassland ecosystem Desert ecosystem Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) Natural Resources and Biodiversity a. Renewable and non- renewable resources. b. Natural resources and associated problems: Forest resources: Use and over-exploitation, deforestation, case studies, Timber extraction, mining, dams and their effects on forests and tribal people. Water Resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams – benefits and problems, water conservation, rainwater harvesting, watershed management. Mineral Resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies. Food Resources: World food problems, Changes in land use by agriculture and grazing, Effects of modern 	
2		16
	 Cand Resources. Land as a resource, rand degradation, man-induced land-slides, soil erosion and desertification, wasteland reclamation C. Role of an individual in conservation of natural resources, equitable use of resources for sustainable lifestyles. d. Definition of biodiversity, levels of biodiversity, value of biodiversity, threats to biodiversity (habitat loss, poaching of wildlife, man-wildlife conflicts). e. Biodiversity at global, national and local levels, India as a biodiversity nation, biogeographical classification of India, hotspots of biodiversity. f. Endangered and endemic species of India. g. Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. 	
3	Environmental Pollution a. Definition, causes, effects and control measures of Air Pollution, water pollution, soil pollution, marine pollution noise pollution, thermal pollution, nuclear hazards.	8

	 b. Solid waste Management: causes, effects and control measures of urban and industrial wastes. c. Role of an individual in prevention of pollution, pollution case studies, pollution case studies. 	
4	 Important Environmental and Social Issues, Management and Legislation a. Climate change, global warming, acid rain, Ozone layer depletion, nuclear accidents and holocaust. Case studies. b. Sustainable development, Resettlement and rehabilitation of people (its problems and concerns, case studies), Environmental ethics (issues and possible solutions), consumerism and waste products. c. Disaster management: floods, earthquake, cyclone and landslides. d. Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act. 	4
	Total	36

S.No.	Name of Authors/Books/Publishers/Place of Publication	Edition
	Textbooks	
1.	Deswal, S. & Deswal A.: A Basic Course in Environmental Studies; Dhanpat Rai & Co.	2013
2	Srivastava Smrti: Environmental Studies; Katson books.	2007
3.	Textbook for Environmental Studies	2004
	Reference Books	
1.	Joseph K. & Nagendran R.: Essentials of Environmental studies; Pearson Edition	2005
2.	Santra S. C., Environmental Science; Central Book Agency.	2011

12.	Mode	of	End Term Exam
	Evaluation		

DEPARTMENT OF ALLIED SCIENCES (MATHEMATICS)

SEMESTER I

Name of Department: - Allied Sciences (Mathematics)

1.	Subject Code: TMA 1	01	course Title:	ENGIN	EERING N	IATHEMATICS	;-1
2.	Contact Hours: L:	3	T: 1	P: 0			
3.	Examination Duration (Hr	s): The	ory 3		Practical	0	
4.	Relative Weight: CIE	25	PRS 0	MSE 2	2 5 ESE	50 PRE 0	I
5.	Credits:	4					
6.	Semester:	I					
7.	Category of Course:	Discipl	ine Specific Course	2			

8. Pre-requisite: Basic Knowledge of Mathematics

9. Course Outcome**:	After completion of the course the students will be able to:
	CO1. Understand the concept of Matrices.
	CO2. Solve the system of linear equations.
	CO3. Understand the concept of differential calculus and apply to various
	discipline of Engineering.
	CO4. Analyze the maxima / minima values of function of two or more
	variables with its application to engineering.
	CO5. Solve the multiple integrals and apply to find the area and volumes.
	CO6. Utilize the vector calculus in different engineering systems.

Sl. No.	Contents	Contact Hours
1	Matrices: Elementary row transformation, Rank of a matrix, linear dependency and independency, Consistency of a system of linear equations, Characteristic equation, Eigen values and Eigen vectors, symmetric and skew symmetric matrix, Diagonalization and their applications.	(11 Hrs)

2	Calculus-I: Higher order derivatives, Successive Differentiation, Leibnitz's theorem, Limits, Continuity and Differentiability of two variables, Partial Differentiation, homogeneous functions, Euler's theorem, Expansion of function of severable variable using Taylor's and Maclaurin's theorems.	(09 Hrs)
3	Calculus-II Extrema (Maxima/ Minima) of functions of two variables, method of Lagrange's multipliers, Introduction of Jacobian, properties of Jacobian, Jacobian of implicit and explicit functions, functional dependence.	(07 Hrs)
4	Multiple Integrals Double and triple integrals, Change of order of integration, Beta and Gamma functions, Applications to area, volume, Dirichlet's integral.	(09 Hrs)
5	Vector Calculus Introduction to Vectors, Gradient, Divergence and Curl of a vector and their physical interpretation, Line, Surface and Volume integrals, Green's, Stoke's and Gauss's divergence theorems.	(09 Hrs)
	Total	(45 Hrs)

SL.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of Publication /
No.			Reprint
	Textbooks		
1.	C. B. Gupta, S. R. Singh and Mukesh Kumar, "Engineering Mathematics for Semesters I and II" McGraw Hill Education	1 st	2015
2.	Ramana, B. V., "Higher Engineering Mathematics", Tata McGraw Hill publications,	6 th	2006
3.	R. K. Jain, S. R. K. Iyengar, Advanced Engineering Mathematics, Narosa Publication,	5 th	2019
4.	Grewal, B. S., "Higher Engineering Mathematics", 40e, Khanna Publications, India.		2022
5.	Kreyszig, Erwin., "Advanced Engineering Mathematics", 9e, Wiley Publications.	9 th	2014.
б.	Tom M. Apostol 'Calculus' Volume 2 Wiley Publications.	2 nd	2022
	Reference Books		
1.	G. B. Thomas and R. L. Finney	9 th	2010
2.	Gorakh Prasad and Chandrika Prasad	11 th	1968

DEPARTMENT OF ALLIED SCIENCES (MATHEMATICS)

SEMESTER II

Name of Department: - Allied Sciences (Mathematics)

1.	Subject Code: TMA 20	1 se Title:	ENGINEERING MATHEMATICS-II
2.	Contact Hours: L:	3 T: 1	P: 0
3.	Examination Duration (Hrs)	: Theory 3	3 ¹ 0
4.	Relative Weight: CIE	25 PRS 0	MSE 25 ESE 50 PRE 0
5.	Credits:	3	
6.	Semester:	II	
7.	Category of Course:	Discipline Specific Co	ourse

8. Pre-requisite: Basic Knowledge of Mathematics

9. Course Outcome:	After completion of the course the students will be able to:
	CO1. Solve the linear ordinary differential equations.
	CO2. Utilize the Laplace transforms in linear and simultaneous linear
	differential equations.
	CO3. Apply the Fourier series for signal analysis in various
	engineering discipline.
	CO4. Classify the partial differential equations and solve
	homogeneous partial differential equations with constant coefficients.
	CO5. Apply method of separation of variables to solve 1D heat, wave
	and 2D Laplace equations.
	CO6. Utilize Fourier transforms in Engineering.

Sl. No.	Contents		
1	Differential equation Ordinary differential equation of first order (Exact and reducible), linear differential equations of nth order with constant coefficients, complementary functions and particular integrals, Euler Homogeneous differential equation, Method of variation of parameters and applications of ODE.	(09 Hrs)	
2	Laplace Transform	(09 Hrs)	

	Introduction of Laplace Transform, Shifting Theorems Existence theorem and properties, Laplace transform of derivatives and integrals, Inverse Laplace transform, Laplace transform of periodic functions, Unit step function and Dirac delta function, Convolution theorem, Applications to solve simple linear and simultaneous linear differential equations.			
2	Partial differential equations- I	(00 Hm)		
3	Introduction to PDE, Formation of PDE, solution first order PDE, Lagrange's and Charpit's methods, standard form of first order PDE.	(09 Hrs)		
	Partial differential equations -II			
4	Solution of linear partial differential equations with constant coefficients of second order and their classifications: parabolic, hyperbolic and elliptic, Method of separation of variables for solving partial differential equations.	(09 Hrs)		
	Fourier series and Fourier Transform			
5	Periodic functions, Fourier series of periodic functions, Euler's formula, Fourier series having arbitrary period, Change of intervals, Even and odd functions, Half range sine and cosine series. Fourier Transform, Fourier	(09 Hrs)		
	Sine and Cosine Transform, Application of Fourier Transform.			
	Total	(45 Hrs)		

SL.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of Publication /
No.			Reprint
	Textbooks		
1.	C. B. Gupta, S. R. Singh and Mukesh Kumar, "Engineering	1 st	2015
	Mathematics for Semesters I and II" McGraw Hill		
	Education.		
2.	E. Kreyszig, Advanced Engineering Mathematics, Wiley India.	9 th	2014
3.	B. S. Grewal, Higher Engineering Mathematics, Khanna Publications.	44 th	2022
4.	Tom M. Apostol 'Calculus' Volume 2 Wiley Publications.	2^{nd}	2022
	Reference Books		
1.	C. Prasad, Advanced Mathematics for Engineers, Prasad	3 rd	2019
	Mudralaya.		
2.	R. K. Jain, S. R. K. Iyengar, Advanced Engineering	5 th	2009
	Mathematics, Narosa Publication.		

DEPARTMRNT OF ALLIED SCIENCES (MATHEMATICS)

SEMESTER II

Name of Department: - Allied Sciences (Mathematics)								
1.	Subject Code: TMA 202	02 Course Title: ENGINEERING MATHEMATICS			ICS			
2.	Contact Hours: L:	\$	T: 1	P: 0				
3.	Examination Duration (Hrs)	: Theory	′ 3	Practical	0			
4.	Relative Weight: CIE	25	PRS 0	MSE 25	ESE	50	PRE	0
5.	Credits:	4						
6.	Semester:	II						
7.	Category of Course:	Disciplin	ne Specific Cour	rse (DSC)				

Pre-requisite: Basic knowledge of mathematics 8.

9. Course	
Outcome**:	After completion of the course the students will be able to:
	CO1. Understand the concept of Matrices and determinants.
	CO2. Identify and understand the significance of Differentiation and
	Integration in Bio Technology.
	CO3. Apply the linear differential equations in Biological system.
	CO4. Illustrate linear and nonlinear algebraic equations.
	CO5. Utilize the applications of probability and Statistics in Bio
	Technology.
	CO6. Use of Mathematics and their applications in Bio Technology.

Sl. No.	Contents	
1	Matrix And Determinants: Definitions, type of matrices, properties of matrices, algebra of matrices (Addition, subtractions and multiplication), Determinants, Properties of determinants, Adjoint of matrix, Inverse of a matrix, System of linear equations, Eigen values and Eigen vectors for 2 x 2 matrix. Application of Matrices.	(09 Hrs)
2	Differentiation And Integration:	(09 Hrs)

	Limit (L'Hospital Rule) and Continuity, Differentiation of Standard functions of one variable, Basic Rules of Differentiation (product rule, quotient rule, chain rule), Maxima and minima for one variable, Integration (Integration by part, Integration by substitution).	
3	Differential Equations: Introduction to Differential equations, Differential equations of first order and first degree. Variable separable method, Homogeneous differential equations, linear differential equations, Linear differential equations of second order with constant coefficients, complementary function and particular integral. Applications of Differential Equations.	(09 Hrs)
4	Numerical Solution of Linear and Non-Linear Equations: Numerical solution of linear and nonlinear algebraic equations (using Bisection method, Iterative method, Newton Raphson method), Numerical Integration (Trapezoidal and Simpson's rule)	(09 Hrs)
5	Probability: Basic probability and laws, sample space, event, and properties, conditional probability, Bayes' theorem.	(09 Hrs)
	Total	(45 Hrs)

SL.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of Publication /
No.			Reprint
	Textbooks		
1.	C. B. Gupta, S. R. Singh and Mukesh Kumar,	1 st	2015
	"Engineering Mathematics for Semesters I and II" Mc		
	Graw Hill Education.		
2.	B. S. Grewal: Higher Engineering Mathematics, Khanna	44 th	2022
	Publications.		
3.	D. C. Agarwal, M. Jha ,S. K. Gupta, Remedial	1 st	2022
	Mathematics, Shree Sai Prakashan Meerut.		
4.	Piskunov N: Differential & Integral calculus, Moscow	1 st	1969
	Peace Puse.		
	Reference Books		
1.	A. R. Vashitha. Remedial Mathematics, Krishna	5 th	2020
	Publications, Meerut.		
2.	R. K. Jain and S. R. K. Iyengar	5^{th}	2002

DEPARTMRNT OF ALLIED SCIENCES (MATHEMATICS)

SEMESTER I

Name of Department: - Allied Sciences (Mathematics)

1.	Subject Code:	TTC-10	D1 rse Title: Discrete Mathemat		tics						
2.	Contact Hours:	L:	3	T: 🔽	1	P:	0				
3.	Examination Dur	ation (Hrs)	: Theor	ry	3	3	1		0		
4.	Relative Weight:	CIE	25	PRS	0	MSE	E 25	ESE	50	PRE	0
5.	Credits:		4								
6.	Semester:		I								
7.	Category of Cour	se:	Discipl	ine Spec	ific Cou	urse (DS	C)				

8. Pre-requisite: Basic Knowledge of Mathematics


9. Course Outcome**:	After completion of the course the students will be able to: CO1. Define the Boolean Algebra and logic gates.			
	CO2. Understand the concepts of Group, ring, integral domains and field.			
	CO3. Demonstrate the counting principle, generating function and			
	recurrence relation.			
	CO4. Analyze different algorithms for trees and graphs.			
	CO5.Elaborate the natural deduction and axiom systems.			
	CO6.Utilize propositional calculus with their properties in computer science			
	engineering.			

Sl. No.	Contents	Contact Hours
1	Boolean algebra: Introduction of Boolean algebra, truth table, basic logic gate, basic postulates of Boolean algebra, principle of duality, canonical form, Karnaugh map.	(09 Hrs)
2	Abstract algebra: Set and relations, groups, abelian group, Finite and Infinite group, order of group, cyclic group, coset, Lagrang's theorem, ring, division ring , ring with unity, Integral domain, field.	(09 Hrs)
3	Combinatorics: Basic counting, balls and bins problems, generating functions, recurrence relations. Proof techniques, principle of mathematical induction, pigeonhole principle.	(09 Hrs)

4	Graph Theory: Graphs and digraphs, complement, isomorphism, connectedness and reachability, adjacency matrix, Eulerian paths and circuits in graphs and digraphs, Hamiltonian paths and circuits in graphs and tournaments, trees; Planar graphs, Euler's formula, dual of a planer graph, independence number and clique number, chromatic number, statement of Four-color theorem.	(09 Hrs)
5	Logic: Propositional calculus - propositions and connectives, syntax; Semantics - truth assignments and truth tables, validity and satisfiability, tautology; Adequate set of connectives; Equivalence and normal forms; Compactness and resolution; Formal reducibility - natural deduction system and axiom system; Soundness and completeness.	(09 Hrs)
	Total	(45 Hrs)

SL.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of
No.			Publicati
			on /
			Reprint
	Textbooks		
1.	Topics in Algebra, I. N. Herstein, John Wiley and Sons.	2^{nd}	1975
2.	Digital Logic & Computer Design, M. Morris Mano, Pearson	5 th	2011
3.	Elements of Discrete Mathematics, (Second Edition) C. L. LiuMcGraw Hill, New Delhi	4 th	2017
4.	Graph Theory with Applications, J. A. Bondy and U. S. R. Murty, Macmillan Press, London.	1 st	1976
5.	Mathematical Logic for Computer Science, L. Zhongwan, World Scientific, Singapore	2 nd	1998
	Reference Books		
1.	Introduction to linear algebra. Gilbert Strang.	5 th	2022
2.	Introductory Combinatorics, R. A. Brualdi, North-Holland, New York.	5 th	2019
3.	Graph Theory with Applications to Engineering and Computer Science, N. Deo, Prentice Hall, Englewood Cliffs.	1 st	2016
4.	Introduction to Mathematical Logic, (Second Edition), E. Mendelsohn, Van-Nostrand, London.	3 rd	2007

DEPARTMRNT OF ALLIED SCIENCES (MATHEMATICS) SEMESTER I

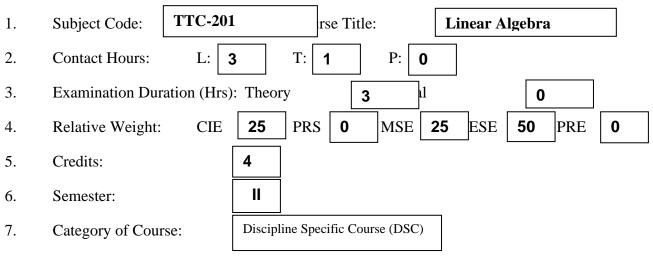
8. Pre-requisite: Basic Knowledge of Mathematics

9. Course	
Outcome**:	After completion of the course the students will be able to:
	CO1. Understand business problems in appropriate statistical terms in order use data to make better decisions.CO2.Analyze the concept of probability with applications.
	CO3. Understand the concept of Inferential Statistics and applications in Business.
	CO4. Describe statistical methods and probability distribution.
	CO5. Demonstrate application of Moments.
	CO6. Demonstrate application of Double and triple Integral.

Ref: GEU/MATH-BOS/2023/01

Sl. No.	Contente	Contact
SI. NO.	Contents	Hours

1	Introduction to Statistics: Definition of Statistics. Basic objectives. Applications in various branches of science with examples. Collection of Data: Internal and external data, Primary and secondary Data. Population and sample, Representative sample. Descriptive Statistics: Classification and tabulation of univariate data, graphical representation, Frequency curves. Descriptive measures - central tendency and dispersion. Bivariate data. Summarization, marginal and conditional frequency distribution.	(09 Hrs)
2	Probability: Concept of experiments, sample space, event. Definition of Probability. Conditional Probability, Bayes Theorem.	(09 Hrs)
3	Probability distributions: Discrete & continuous distributions, Binomial, Poisson and Geometric distributions, Uniform, Exponential, Normal, Chi- square, t, F distributions.	(09 Hrs)
4	Expected values and moments: Mathematical expectation and its properties, Moments (including variance) and their properties, interpretation, Moment generating function.	(09 Hrs)
5	Calculus: Basic concepts of Differential and integral calculus, limit, continuity and differentiability for two variables, double and triple integral, change of order of Integration, Application of double and triple integral.	(09 Hrs)
	Total	(45 Hrs)


SL.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of Publication /
No.			Reprint
	Textbooks		
1.	C. B. Gupta, S. R. Singh and Mukesh Kumar, "Engineering Mathematics for Semesters III and IV" McGraw Hill Education	1 st	2016
2.	Introduction of Probability Models, S. M. Ross, Academic Press, N.Y.	11 th	2014
3.	Fundamentals of Statistics, vol. I & II, A. Goon, M. Gupta and B. Dasgupta, World Press.	3 rd	1968
4.	Higher Engineering Mathematics, B. S. Grewal, Khanna Publication, Delhi.	43 rd	2015
	Reference Books		
1.	A first course in Probability, S. M. Ross, Prentice Hall.	9 th	2013
2.	Probability and Statistics for Engineers, (Fourth Edition), I. R. Miller, J.E. Freund and R. Johnson, PHI.	9 th	2017

3.	Introduction to the Theory of Statistics, A. M. Mood, F.A. Graybill and D.C. Boes, McGraw Hill Education.	3 rd	1974
4.	Advanced Engineering Mathematics, Peter V. O'Neil, Thomson Learning.	7 th	2010
5.	Advanced Engineering Mathematics, M. D. Greenberg, Pearson Education.	2 nd	1998

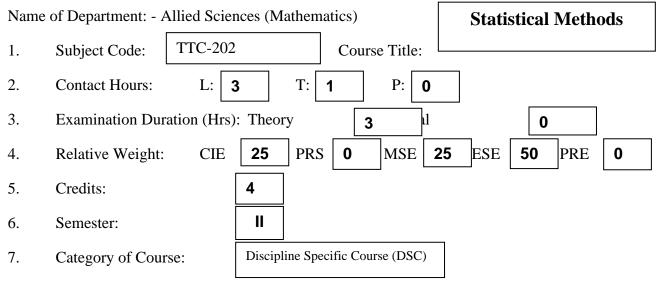
DEPARTMENT OF ALLIED SCIENCES (MATHEMATICS)

SEMESTER II

Name of Department: - Allied Sciences (Mathematics)

8. Pre-requisite: Basic Knowledge of Mathematics

9. Course	After completion of the course the students will be able to:
Outcome**:	CO1. Understand the concept of Matrices and determinants.
	CO2. Discussion of rank, nullity and system of linear equations.
	CO3. Identify and understand the significance of Gram-Schmidt
	orthogonalization
	CO4. Explain the applications of Eigenvalues and Eigenvectors.
	CO5. Analyze the linear transformation of matrices.
	CO6. Demonstrate application of Image Processing and Machine
	Learning.


Sl. No.	Contents	Contact Hours
1	Elementary row transformation, Rank of a matrix, linear dependency and independency, Consistency of a system of linear equations, Characteristic equation, Eigen values and Eigen vectors, symmetric and skew symmetric matrix, Diagonalization and their applications, Gaussian elimination; LU Decomposition.	(09 Hrs)
2	Vector space, basis Dimension, subspace of vector space Orthogonality; Projections.	(09 Hrs)

3	Linear transformations rank and nullity theorem, Inverse of Linear Transformation .	(09 Hrs)
4	Inner product space ,orthogonality, projection, Gram-Schmidt orthogonalization and QR decomposition.	(09 Hrs)
5	Singular value decomposition and Principal component analysis Introduction to their applications in Image Processing and Machine Learning.	(09 Hrs)
	Total	(45 Hrs)

SL.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of
No.			Publication /
	Textbooks		Reprint
- 1		4 4th	2015
1	Higher Engineering Mathematics, B. S. Grewal, Khanna Publishers.	44 th	2015
2	C. B. Gupta, S. R. Singh and Mukesh Kumar, "Engineering Mathematics for Semesters I and II" McGraw Hill Education	1 st	2015
3	K. Holfman, R. Kunze, Linear Algebra	2 nd	2018
4	V. Krishnamurthy, V.P. Mainra, J.L. Arora	1 st	1976
	Reference Books		
1.	Advanced Engineering Mathematics, Peter V. O'Neil, Cengage Learning.	7 th	2010
2.	Advanced Engineering Mathematics, Michael. D. Greenberg, Pearson.	2 nd	1998
3.	Introduction to linear algebra, (Fifth Edition), Gilbert Strang, Wellesley-Cambridge Press.	5 th	2016
4.	Applied Mathematics (Vol. I & II), P. N. Wartikar & J. N. Wartikar, Pune Vidyarthi Griha Prakashan.	1 st	2019
5.	Digital Image Processing, R C Gonzalez and R E Woods, Pearson.	4 th	2017
6.	https://machinelearningmastery.com/introduction-matrices- machine-learning/		

DEPARTMRNT OF ALLIED SCIENCES (MATHEMATICS)

SEMESTER II

8. Pre-requisite: Basic Knowledge of Mathematics

9. Course	After completion of the course the students will be able to:
Outcome**:	
	CO1. Identify the appropriate choice of statistical tools and techniques
	CO2. Familiarize with correlation coefficient and regression coefficient.
	CO3. Explain testing of Hypothesis.
	CO4. Understand the application of some statistical tools and techniques
	in Business Decisions
	CO5. Analyze the mathematical models.
	CO6. Understand the concept of statistical models and its application in
	solving analytics problems

Sl. No.	Contents	
SI. INU.	Contents	Hours
1	Sampling Techniques: Random sampling. Sampling from finite and infinite populations. Estimates and standard error (sampling with replacement and s without replacement), Sampling distribution of sample mean, stratified random sampling	(09 Hrs)
2	Linear Statistical Models: Scatter diagram. Linear regression and correlation. Least squares method. Rank correlation. Standard multiple regression models with emphasis on detection of collinearity, outliers, non-normality and autocorrelation, Validation of model assumptions. Multiple correlation, Analysis of variance (one way, two way with as well	(09 Hrs)

	as without interaction)	
3	Estimation: Point estimation, criteria for good estimates (un-biasedness, consistency), Methods of estimation including maximum likelihood estimation.	(09 Hrs)
4	Test of hypothesis: Concept & formulation, Type I and Type II errors, Neyman Pearson lemma, Procedures of testing.	(09 Hrs)
5	 Non-parametric Inference: Comparison with parametric inference, Use of order statistics. Sign test, Wilcoxon signed rank test, Mann-Whitney test, Run test, Kolmogorov-Smirnov test. Spearman's and Kendall's test. Basics of Time Series Analysis & Forecasting: Stationary, ARIMA Models: Identification, Estimation and Forecasting. 	(09 Hrs)
	Laboratory R statistical programming language: Introduction to R, Functions, Control flow and Loops, Working with Vectors and Matrices, Reading in Data, Writing Data, Working with Data, Manipulating Data, Simulation, Linear model, Data Frame, Graphics in R	
	Total	(45 Hrs)

SL.	Name of Authors/Books/Publishers/Place of	Edition	Year of Publication /
No.	Publication		Reprint
	Textbooks		
1.	Probability and Statistics for Engineers (4th Edition), I.R. Miller, J.E. Freund and R. Johnson.	8 th	2015
2.	Fundamentals of Statistics (Vol. I & Vol. II), A. Goon, M. Gupta and B. Dasgupta	2 nd	2016
3.	The Analysis of Time Series: An Introduction, Chris Chatfield.	7 th	2019
	Reference Books		
1.	Introduction to Linear Regression Analysis, D.C. Montgomery & E.Peck	5 th	2013
2.	Introduction to the Theory of Statistics, A.M. Mood, F.A. Graybill& D.C. Boes.	3 rd	2017
3.	Applied Regression Analysis, N. Draper & H. Smith	3 rd	1998

4.	Hands-on Programming with R,- Garrett Grolemund	2 nd	2015
5.	R for Everyone: Advanced Analytics and Graphics, Jared P. Lander	1 st	2013

GRAPHIC ERA (DEEMED TO BE UNIVERSITY), DEHRADUN

SEMESTER I

Name of Department: - Computer Science and Engineering

	Subject Code:	TCS 101		Cou	rse Title:	:					
	Course Title:	Fundame	ental of con	nputer a	and intro	oduc	tion to	prog	Jramm	ing	
	Contact Hours:	L: 3	, T :	0	P: 0						
	Examination Dur	ration (Hr	s): The	eory 3		Pra	ctical	0			
•	Relative Weight:	CIE	25 PR	S 0	MSE	25	SEE	50	PRE	0]
	Credits:	[3		_		_		_		_
	Semester:		lst								
	Category of Cou	irse:	DSC								
	Pre- requisite: E	Basic Kno	owledge of	Mathen	natics						
	9. Course Outco	ome: •	Analyze ar	cks of co l basic d lution to d select sion mak sing diffe complex tion in ap mplemer	omputer s ata types problem best po ting skills erent type problem oplication at the cor	sciences and by us ossible a and es of l as a us usir ncept	ce. syntax o sing tool e solutio develo ooping collectio ng funct arrays f	of C pi ls like on for p the staten on of s ions.	rogram algorith decisi aptituc nents. sub pro	ming. om and on-base le to se blems b	flowcharts. ed problems olve iterative by applying
0.	Details of the C	ourse:		40.040							Comtact

SI. NO.	Contents	Contact	i.
		Hours	
1	UNIT- I	8	
	Generation of computers, Computer system memory hierarchy, Input/Output,		I
	RAM/ROM, Software & Hardware, Understand bit, byte, KB, MB, GB and		
	their relations to each other, Operating System overview, Computer Networks		I
	OverviewAlgorithms and Flow Charts – Examples of Flow charts for loops and		

٦

	conditional statements	
2	UNIT-2 First C program - Hello world, How to open a command prompt on Windows or Linux. How to read and print on screen - printf(),scanf(),getchar(), putchar()	10
	Variables and Data types - Variables, Identifiers, data types and sizes, type conversions, difference between declaration and definition of a variable, Constants	
	Life of a C program (Preprocessing, Compilation, Assembly, Linking, Loading, Execution), Compiling from the command line, Macros,	
	Operators – equality and assignment, Compound assignment operators, Increment and decrement operators, Performance comparison between pre and post increment/decrement operators, bitwise operators, Logical Operators, comma operator, precedence and associativity.	
3	UNIT- III	8
	Conditional statements: if statement, if-else statement, ternary statement or ternary operator, nested if-else statement, switch statement, Difference between performance of if else and switch, Advantages of if else and switch over each other	
	Loops: 'for' loops, 'while' loops, 'do while' loops, entry control and exit control, break and continue, nested loops	
4	UNIT- IV	7
	Functions: Function prototype, function return type, signature of a function, function arguments, call by value, Function call stack, Recursion v/s Iteration, passing arrays to functions,	
	Storage classes: Automatic, Static, Register, External, Static and Dynamic linking implementation, C program memory (show different areas of C program memory and where different type of variables are stored), scope rules.	
5	UNIT- V	10
	Arrays: Single-dimensional arrays, initializing arrays, computing address of an element in array, character arrays, segmentation fault, bound checking, Searching and Sorting.	
	Total	43

SL.	Name of Authors/Books/Publishers	Edition	Year of
No.			Publication/Reprint

	Text Books		
1.	Peter Prinz, Tony Crawford,"C in a Nutshell", Oreilly Publishers,	1st	2011
2.	Peter Norton, "Introduction to computers", TMH,	6th	2009
	E.Balagurusamy,"Programming in ANSI C",McGraw Hill	6th	2015
	Reference Books		
1.	Steve Oualline, "Practical C programming", Orielly Publishers, 2011.	3rd	2011
2.	Brian W Kernighan, Dennis M Ritcie,"The C Programming Language", Prentice Hall, 1988. R3. Herbert Schildt," C: The Complete Reference", 4thEdition.TMH, 2000.	2nd	2000
3.	YashwantKanetkar,"Let Us C",BPB Publication	8th	2007

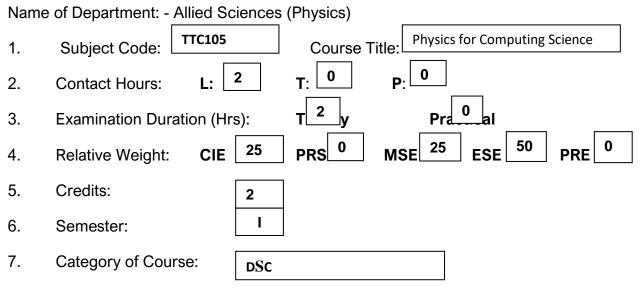
12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term
		Exam / Lab Exam

GRAPHIC ERA (DEEMED TO BE UNIVERSITY), DEHRADUN

SEMESTER II

Name	Name of Department: - Computer Science and Engineering									
1.	Subject Code: TCS 201 Course Title:									
	Course Title: Programming for Problem Solving									
2.	Contact Hours: L:	, Т :	0	P: (D					
3.	Examination Duration (Hr	s): Th	eory 3		Prac	ctical	0			
4.	Relative Weight: CIE	25 PF	S 0] MSE	25	SEE	50	PRE	0	
5.	Credits:	3								
6.	Semester:	llnd								
7.	Category of Course :	DSC								
8.	Pre- requisite: Basic Kn	owledge o	Mathem	natics a	and C	omput	er Fu	ndame	entals	

9. Course Outcome:	 Learn and apply concepts of strings and multi-dimensional array for providing solutions to homogenous collection of data types Propose solution to problem by using tools like algorithm and flowcharts. Apply the concept of pointers to optimize memory management
	 by overcoming the limitations of arrays. Process and analyze problems based on heterogeneous collection of data using structures. Apply concepts of file handling to implement data storage and retrieval tasks. Implement the basic real life problems using python


SI. No.	Contents	Contact Hours
1	UNIT- I	6
	Multi-Dimensional Arrays- Initializing arrays, row major and column major form of an array, character strings and arrays, Strings – Declaration of strings, Initialization of strings using arrays and pointers, Standard library functions of string.	
2	UNIT-2 Pointers –Basic of pointers and addresses, Pointers and arrays, Pointer arithmetic, passing pointers to functions, call by reference. Accessing string through pointers.	10
	Dynamic memory management in C - malloc(), calloc(), realloc(), free(), memory leak,Dangling, Void, Null and Wild pointers	
	Structures - Structures, array of structures, structure within structure, union, typedef, self-referential structure, pointer to structure	
3	UNIT-III File Handling - Opening or creating a file, closing a file, File modes, Reading and writing a text file using getc(), putc(), fprintf() ,fscanf(),fgets(), fputs(), Reading and writing in a binary file, counting lines in a text file, Search in a text file, Random file accessing methods- feof(), fseek(), ftell() and rewind() functions.	8
4	UNIT- IV Introduction to Python-	10
	History of Python, Need of Python Programming, Python features, First Python Program, Running python Scripts, Variables, Reserved words, Lines and indentation, Quotations, Comments, Input output.	
	Data Types, Operators and Expressions: Standard Data Types – Numbers, strings, Boolean, Operators – Arithmetic Operators, comparison Operators, assignment Operators, logical Operators, Bitwise Operators.	
5	UNIT-V Control flow – if, if-elif-else, for, while, break, continue, pass, range(), nested loops.	10
	Functions – Handling functions in Puthon	
	File Handling – Reading text file, writing text file, copying one file to another	
	Total	44

SL. No.	Name of Authors/Books/Publishers		Year of Publication /Reprint	
	Text Books			
1.	Peter Prinz, Tony Crawford,"C in a Nutshell", Oreilly Publishers,	1st	2011	
2.	YashwantKanetkar,"Let Us C",BPB Publication	8th	2007	
	Reference Books			
1.	• Steve Oualline, "Practical C programming", Orielly Publishers, 2011.	3rd	2011	
2.	 Brian W Kernighan, Dennis M Ritcie,"The C Programming Language",Prentice Hall, 1988. R3. Herbert Schildt," C: The Complete Reference", 4thEdition.TMH, 2000. 	2nd	2000	
3.	• E.Balagurusamy,"Programming in ANSI C", McGraw Hill	6th	2015	

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term
		Exam / Lab Exam

DEPARTMENT OF ALLIED SCIENCES - PHYSICS

SEMESTER I

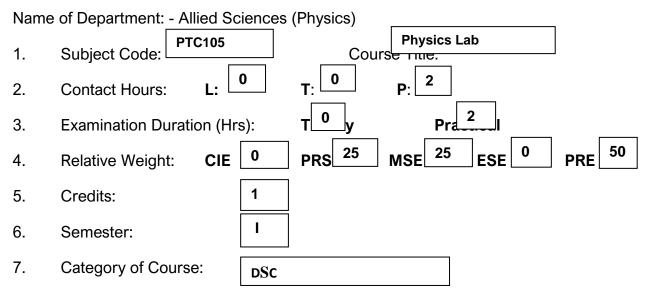
8. **Pre-requisite**: Basic Knowledge of Physics for computer Science

9. Course Outcome:	After completion of the course the students will be able to:
	CO1: Define the basics of Oscillations.
	CO2: Extend the knowledge of Interference and Electromagnetism.
	CO3: Understand the basics of quantum mechanics.
	CO4: Discuss different crystallographic structures in solid state.
	CO5: Examine the basics of LASER, fiber optics and it their application.
	CO6: Explain the basics of Thermodynamics.

UNIT	CONTENTS	Contact Hrs
Unit/Module-I	Oscillation : Periodic motion-simple harmonic motion-characteristics of simple harmonic motion-vibration of simple spring-mass system. Resonance-definition, damped harmonic oscillator – heavy, critical and light damping, energy decay in a damped harmonic oscillator, quality factor, forced mechanical and electrical oscillators.	4
Unit/Module- II	Interference-principle of superposition-Young's experiment: Theory of interference fringes, types of interference, Fresnel's prism, Newton's rings, Diffraction, Difference between interference and diffraction, Fraunhofer diffraction at single slit, plane diffraction grating.	5

Unit/Module-III	Basic Idea of Electromagnetisms: Continuity equation for current densities, Maxwell's equation in vacuum and non-conducting medium.	3
Unit/ Module-IV	Quantum Mechanics: Introduction, Planck's quantum theory, Matter waves, de-Broglie wavelength, Heisenberg's Uncertainty principle, Physical significance of wave function, time independent and time dependent Schrödinger's wave equation, , Particle in a one dimensional infinite potential box	4
Unit/ Module-V	 Crystallography: Basic terms-types of crystal systems, Bravais lattices, miller indices, d spacing, Atomic packing factor for SC, BCC, FCC and HCP structures, X-ray diffraction Semiconductor Physics: Conductor, Semiconductor and Insulator; Origin of Band Theory, Basic concept of Band theory, 	3
Unit/ Module-VI	Laser and Fiber optics: Spatial and temporal coherence, Einstein's theory of matter radiation interaction and A and B coefficients; amplification of light by population inversion, different types of lasers: Ruby Laser, CO ₂ and Neodymium YAG (Neodymium-doped Yttrium Aluminum Garnet); Properties of laser beams: mono-chromaticity, , directionality and brightness, laser speckles, applications of lasers in engineering. Fiber optics and Applications, Types of optical fibers.	5
Unit/ Module-VII	Thermodynamics : Zeroth law of thermodynamics, first law of thermodynamics, brief discussion on application of 1st law, second law of thermodynamics and concept of Engine, entropy, change in entropy in reversible and irreversible processes.	4
		28

Text Books:


S.No.	Name of Authors/Books/Publishers/Place of Publication	Edition	Year of Publication/ Reprint
1.	Ajoy Ghatak, "Optics", Tata Mc Graw Hill.	4 th Edition	2009
2.	N. Subrahmanyam Brijlal& M. N. Avadhanulu, "Optics:", S. Chand.	24 th Edition	2010
3.	A. Beiser, "Concepts of Modern Physics", Tata Mc Graw Hill.	5 th Edition	2001
4.	Resnick, Krane, Halliday, "Physics (vol I&II)", Wiley.	5 th Edition	2007

5.	N. David Mermin, Quantum computer Science, Cambridge University Press.	1 st Edition	2007
6.	Adam Smith, "The Beginner's guide to quantum computing & mechanics", A. Smith Media.	1 st Edition	2022
7.	Frank S Crawford Jr., "Waves", The McGraw Hill Companies	Volume 3	2008
8.	Leonid V. Azaroff, "Introduction to Solids", Tata Mc Graw Hill.	31 st reprint	2008
9.	R E Sonntag, "Fundamentals of Thermodynamics", Wiley Publishers	6 th Edition	2009
10.	P K Nag, "Basic and Applied Thermodynamics", McGraw Hill Education India	2 nd Edition	2014
	Reference Books		
1.	John R. Taylor, Chris D. Zafiratos, Michael A. Dubson, "Modern Physics", Pearson Education.	1 st Edition	2007
2.	Gerd Keiser, "Optic Fiber Communication", Tata Mc. Graw Hill.	5 th Edition	2017
3.	Alastair I M Rae, Jim Napolitano, "Quantum Mechanics" Wiley.	6 th Edition	2015
4.	David J. Griffiths, "Introduction to Electrodynamics", Prentice.	3 rd Edition	2011
5.	Charles P. Poole, Jr. Frank J. Owens, "Introduction to Nanotechnology", Wiley.		2017
6.	Hug D. Young & Roger A. Freedman, "University Physics", Edition, Pearson Publication.	12 th Edition	2008
7.	Alan Giambattista, Betty Mc. Carthy Richardson, Robert C Richardson, "Fundamentals of Physics", Tata Mc Graw Hill.	1 st Edition	2009
8.	Parag Lala, "Quantum computing", Tata Mc Graw Hill.	1 st Edition	2019
9.	Nielsen, "Quantum computation and quantum information", Cambridge University Press.	1 st Edition	2007

10.	SO Pillai, "Solid State Physics", New Age International Publishers	10 th Edition	2022
11.	M. Ali Omar, "Elementary Solid State Physics", Pearson Education	5 th edition	2009
12.	NK Bajaj, "The Physics of Waves and Oscillations", Tata Mc Graw Hill.	25 th reprint	2009

DEPARTMENT OF ALLIED SCIENCES - PHYSICS

<u>Sem</u>

8. Pre-requisite: Basic Knowledge of Experiments in Physics

9. Course	After completion of the course the students will be able to:
Outcome:	 CO1: Find the variation of Magnetic field along the axis of current carrying coil and determine Hall coefficient and energy band gap (Fourprobe method) of a semi-conductor. CO2: Understand the phenomena of photoelectric effect and determine the Plank's constant. Also calibrate analogue instruments and determine the specific resistance. CO3: Apply the methods of diffraction and Interference to determine the wavelength of Laser and sodium light (Monochromatic light) and resolving power of a grating.
	CO4: Determine the parameters of optical fiber. Also determine the Stefan's Constant


10. **Details of the Course:** Students have to perform any 10 experiments:

SI. No.	Contents	Contact Hours
	 13. To study the variation of Magnetic field with distance along the axis of circular current carrying coil and determine the radius of the coil using Stewart and Gee tangent galvanometer. 14. To study Hall Effect and determine Hall coefficient, Hall voltage, current density and carrier mobility of a given semi-conductor. 15. To determine Plank's constant by photoelectric method and study the 	2

ation of intensity with distance.	
determine the wavelength of given laser light by plane diffraction	
ing.	
letermine the Stefan's Constant.	
letermine the Resolving Power of a Plane Diffraction Grating.	
alibrate ammeter and voltmeter using a potentiometer.	
nce Books:	
Advanced Practical Physics for students, B.L.Flint and H.T.Worsnop, 1971, Asia Publishing House.	
Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers	
A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th	
A Laboratory Manual of Physics for Undergraduate Classes,	
	 1971, Asia Publishing House. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

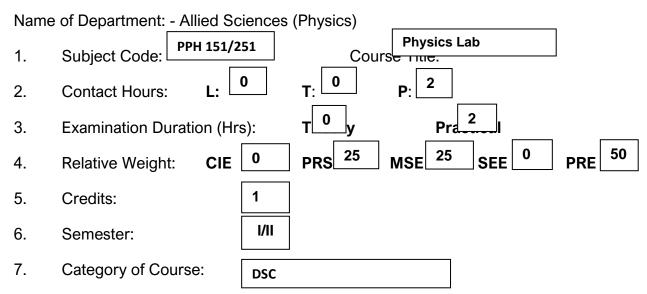
DEPARTMENT OF ALLIED SCIENCES - PHYSICS

SEMESTER I / II

8. **Pre-requisite**: Basic Knowledge of Physics

9.	Course	After completion of the course the students will be able to:		
Outcome:		CO1: Define the wave nature of light through different phenomenon.		
		CO2: Extend the knowledge of Laser, fiber optics and polarization in		
		engineering problems.		
		CO3: Understand the concept of theory of relativity.		
		CO4: Discuss quantum theory of radiation and applications of		
		Schrodinger wave equations.		
		CO5: Examine the behavior of superconductors and quantum		
		computers.		
		CO6: Explain the Maxwell's equations and nanomaterials.		

UNIT	CONTENTS	Contact Hrs
Unit/Module-I	 Interference: Conditions of interference, Spatial and temporal coherence, Bi-prism, interference in wedge shaped film, Newton's rings. Diffraction: Fraunhofer diffraction at single slit and n-slits (Diffraction Grating). Rayleigh's criteria of resolution. Resolving power of grating. 	9
Unit/Module- II	 Polarization: Basic theory of double refraction, Malus law, Ordinary and Extra- ordinary ray, Production, and detection of plane, elliptically and circularly polarized light, specific rotation and polarimeters. Laser: Spontaneous and Stimulated emission of radiation, Einstein Coefficients, 	9


	Principle of laser action. Construction and working of Ruby and He-Ne laser photovoltaic effect.Fiber Optics: Introduction to fiber optics; types of fiber, acceptance angle and cone angle, numerical aperture.	
Unit/Module-III	Special theory of relativity: Inertial and non-inertial frames, Galilean transformation, Michelson-Morley experiment (qualitatively), Einstein postulates of special theory of relativity, Lorentz transformation equations, length contraction, time dilation, variation of mass with velocity, mass-energy relation.	8
Unit/ Module-IV	 Quantum Mechanics: Quantum concept and radiation, Wave particle duality (de-Broglie concept of matter waves), Heisenberg's uncertainty principle, wave function and its significance, Schrodinger's equations, Schrodinger's wave function for a particle confined in one dimensional infinite potential box (rigid box), Eigen values and Eigen functions. Quantum computers: Introduction to quantum computing, Principle, Nanocomputing, prospects and challenges. 	8
Unit/ Module-V	 Superconductivity: Essential properties of superconductors, zero resistivity, Type I, Type II superconductors and their properties. Electromagnetism: Displacement current, Maxwell's Equations in differential form. Nano Physics: Density of states, Nanostructures, fabrication, and characterization techniques (qualitatively). 	8
	Total	42

Text Books:

			Year of
S.No.	Name of Authors/Books/Publishers/Place of Publication	Edition	Publication/
3.NO.	Name of Authors/Books/Fublishers/Flace of Fublication	Edition	Reprint
1.	Ajoy Ghatak, "Optics", Tata Mc Graw Hill.	4 th Edition	2009
2.	N. Subrahmanyam Brijlal& M. N. Avadhanulu, "Optics:", S. Chand.	24 th Edition	2010
3.	A. Beiser, "Concepts of Modern Physics", Tata Mc Graw Hill.	1 st Edition	
4.	Resnick, Krane, Halliday, "Physics (vol I&II)", Wiley.	5 th Edition	2007
5.	Robert Resnick, "Introduction to Special Relativity", Wiley Publishers.	1 st Edition	2007
6.	N. David Mermin, Quantum computer Science, Cambridge University Press.	1 st Edition	2007

7.	Adam Smith, "The Beginner's guide to quantum computing & mechanics", A. Smith	1 st Edition	2022
	Media.		
	Reference Books	1 st Edition	
		TECHNON	
1.	John R. Taylor, Chris D. Zafiratos, Michael A. Dubson, "Modern Physics", Pearson	1 st Edition	2007
	Education.		
2.	Gerd Keiser, "Optic Fiber Communication", Tata Mc. Graw Hill.	5 th Edition	2017
			0045
3.	Alastair I M Rae, Jim Napolitano, "Quantum Mechanics" Wiley.	6 th Edition	2015
4.	David J. Griffiths, "Introduction to Electrodynamics", Prentice.	3 rd Edition	2011
5.	Charles P. Poole, Jr. Frank J. Owens, "Introduction to Nanotechnology", Wiley.		2017
6.	Hug D. Young & Roger A. Freedman, "University Physics", Edition, Pearson	12 th Edition	2008
	Publication.		
7.	Alan Giambattista, Betty Mc. Carthy Richardson, Robert C Richardson,	1 st Edition	2009
	"Fundamentals of Physics", Tata Mc Graw Hill.	r Eanon	2000
8.	Parag Lala, "Quantum computing", Tata Mc Graw Hill.	1 st Edition	2019
9.	Nielsen, "Quantum computation and quantum information "Cambridge University	1 st Edition	2007
	Press.		

Semester I/II

8. Pre-requisite: Basic Knowledge of Experiments in Physics

9. Course	After completion of the course the students will be able to:
Outcome:	CO1: Find the electrical and magnetic properties of materials and extend
	the knowledge of nanotechnology using electroplating.
	CO2: Understand the principle and characteristics of photo devices and
	optical fiber.
	CO3: Apply the methods of calibration to analog instruments.
	CO4: Determine the refractive index of liquid, wavelength of light and
	specific rotation of optically active substance through experiments based
	on phenomena of optics.

SI. No.	Contents	Contact Hours
	Students have to perform any twelve experiments:	
	20. To determine the wavelength of monochromatic light by Newton's ring	
	experiment.	2
	21. To determine refractive index of transparent liquid by Newton's ring	
	experiment.	

22. To determine the specific resistance of the constantan wire using Carey-
Foster's bridge.
23. To determine the wavelength of monochromatic light using Fresnel Biprism
experiment
24. To determine the energy band gap of given semiconductor by Four-probe
method.
25. (a) To determine the wavelengths of spectral line of Mercury light using
plane transmission grating.
(b) To determine the wavelengths of given Laser light using plane
transmission grating.
26. To study the variation of magnetic field with distance along the axis of
circular coil carrying current and to determine the radius of coil.
27. To determine the magnetic susceptibility of a paramagnetic substance by
Quincke's method.
28. To determine the specific rotation of Sugar Solution using Half Shade
Polarimeter.
29. To study the characteristics of Solar Cell
30.a) To calibrate Voltmeter by using potentiometer.
b) To calibrate Ammeter by using potentiometer.
31. To determine Planck's constant by photoelectric method and study the
variation of intensity with distance.
32. To determine the electro chemical equivalent of Copper.
33. To Verify Law of Malus.
34. To study Hall Effect and determine the hall voltage, hall coefficient, current
density and carrier mobility of a given semiconductor.
35. To determine the numerical aperture and acceptance angle of an optical
fiber.
36. To measure the refractive index of transparent liquid using Laser.
37. To determine the dielectric constant of air.38. To determine wavelength of monochromatic light using Michelson interferometer.

GRAPHIC ERA (DEEMED TO BE UNIVERSITY), DEHRADUN

SEMESTER I and II

Name of Department: - **Chemistry**

4.	Subject Code:	CH101/201 Course Title: Engineering Chemistry		
5.	Contact Hours:	L: 3 T: 0 P: 0		
6.	Examination Durat	on (Hrs): Theory 3 Practical 0		
4.	Relative Weight:	CWA 25 PRS 0 MSE 25 ESE 50 PRE 0		
5.	Credits:	3		
9.	Semester:	Autumn/Spring		
10.	Subject Area:			
11.	Pre-requisite:	Basic Knowledge of Chemistry.		
 9. Course acquire knowledge of structure and properties of moleculesbased on bonding and spectroscopic techniques understand the chemistry of purification of water and itsindustrial and domestic application classify various types of polymers and their applications Interpret and distinguish between the different types of conventional and non-conventional fuels apply the basic principles of electrochemistry in different electrochemical cells, corrosion control, fuel cells and industrial applications 				

UNIT	CONTENTS	Contact Hrs
Unit - I	 MOLECULAR STUCTURE AND SPECTROSCOPIC TECHNIQUES Molecular Orbital Theory, Formation of homo and heteronuclear diatomic molecules Hydrogen Bonding and its application Metallic Bonding (Band theory) and application to conductors, semiconductors and insulators Nanoscale Materials - Properties and applications Basic Principles of spectroscopy and its applications for 	8

	molecularstructure			
Unit - II	WATER TECHNOLOGYUnit - IIHardness of water: Causes, Types, Measurement, Boiler troubles: Sludges, Scales and Caustic Embrittlement Softening of water by L-S Process, Zeolite Process and Reverse OsmosisProcess, Ion Exchange Process, Calgon Process Numerical Problems based on L-S Process, Zeolite Process and hardnessof water.Introduction to the membrane concept for the treatment of			
	microplasticsfrom water			
	 POLYMERS Polymers: Definition, degree of polymerization, functionality of monomer, Classification of polymers with examples, Types of polymerizations – addition and condensation polymerization with examples. Mechanism of addition polymerization. 	8		
Unit -III	Plastics: Definition and characteristics- thermoplastic and thermosettingplastics, preparation, properties, and applications of PVC and Bakelite			
	Fibers: Characteristics of fibers – preparation, properties and applicationsof Nylon and Dacron.			
	Conducting polymers: Characteristics and Classification of conductingpolymers with examples.			
	Biodegradable polymers: Concept and advantages – Preparation of Polylactic acid and poly vinyl alcohol and their applications.			
	Liquid Crystalline Polymers: Characteristics, classification with examples and their applications.			
Unit –IV	FUELS AND RENEWABLE SOURCE OF ENERGYFuels Definition, Classification and Characteristics of a good fuel, Calorific value and its determination by Bomb Calorimeter, Numerical problems on Bomb Calorimeter, Composition and uses of Natural gas, CNG, LPG.Renewable Energy Sources:	8		
	Solar energy, wind energy, hydroelectric and geothermal. Biofuels as alternative sources of energy (biomass, biogas).			
Unit-V	ELECTROCHEMISTRY & ITS APPLICATIONS Electrode potential, standard electrode potential, factors affecting the electrode potential of a cell. Nernst equation: Electrochemical series and its application, Electrochemical cell: Daniel cell, Concentration cells, electrolyteconcentration cell	10		

Numerical problems based on electrode potential and emf of a cell. Fuel Cells: Introduction, Principles, Classification, and application Corrosion its causes and effects, Theories of corrosion – Chemical & Electrochemical corrosion	
Total	42

Text Books:

1. <u>Sunita Rattan</u>, "Comprehensive Engineering Chemistry", S.K. Kataria& SonsDelhi, India, 2nd

Edition (2009)

- **2.** Shashi Chawala , "Theory and Practical's of Engineering Chemistry", DhanpatRai and Company, (Pvt) Ltd 3rd Edition (2012)
- **3.** Jain &Jain "A text book of Engineering Chemistry," Dhanpat Rai Publishing Company,

15th Edition New Delhi (2008)

Reference Books:

- **9.** J.D. Lee, "Concise Inorganic Chemistry", 5th Edition (1996)
- 10. K. L. Kapoor "A text book of Physical Chemistry" Vol. 5, Macmillan India, 1st Edition (2004)
- **11.** Prof. K.N. Jayaveera, Dr.G.V.Subba Reddy and Dr.C. Ramachandraiah, "Chemistry for Engineers" McGraw Hill Higher Education Hyd.,(2009)
- 12. William Kemp, "Organic Spectroscopy", Palgrave Foundations, (1991).
- **13.** L.E.Foster, "Nanotechnology, Science Innovation & Opportunity", Pearson Education, 2007.
- **14.** Y.R. Sharma "Elementary Organic Spectroscopy: Principles and Chemical Applications", 1st Edition,
- **15.** F.W.Bill, Meyer, A Text book of Polymer Chemistry, 3rd Edition 2009,
- **16.** Thirumala Chary and Laxminarayana, "Engineering Chemistry", Scitech Publishers, Chennai (2016).

GRAPHIC ERA (DEEMED TO BE UNIVERSITY), DEHRADUN

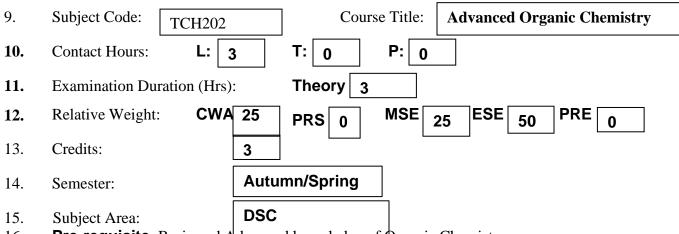
9.	Subjec	et Code:	PCH151	/251		Cours	e Title:	С	hemist	ry Practio	cal
10.	Contac	et Hours:	L: ()	T: 0		P: 2				
11.	Exami	nation Du	ration (Hrs)	Prac	tical	3					
12.	Relativ	ve Weight	: CWA	25	PRS	0	MSE	25	ESE	50 PR	RE 0
13.	Credit	s:		2	l]					
14.	Semes	ter:		Autu	mn/Sp	ring					
15.	Subjec	et Area:		DSC							
16.	16. Pre-requisite: Basic Knowledge of Experiments in Chemistry										
9. Cou	• Analyze the water and oil quality parameter.										
Outco	mes:		Jnderstand the		•	• •		ion	and their		

Name of Department: **Chemistry**

Outcomes:
Understand the concept of viscosity, surface tension and their applications.
Analyze the ores and bleaching powder sample
Knowledge of pH metric and calorimetry and their application inindustry.

10. Detailed Syllabus: Students must perform any twelve experiments:

UNIT	CONTENTS	CONTACT HRS
EXP- 1	To determine the alkalinity of the given water sample containing carbonate (CO 2) jons and bicarbonate (HCO $_{3}$) ions by titrating it against standard HCl solution [N/10] using phenolphthalein and methyl orange as indicators.	2
EXP - 2	To determine the chloride ion (CI ⁻) content in the given water sample by Argentometric method (Mohr's method) using N/50 AgNO ₃ as a standard solution and potassium chromate (K ₂ CrO ₄) as an internal indicator.	2


EXP-3	To determine the temporary and permanent hardness of given water sample by titrating it against standard solution of M/100 Ethylene Diamine Tetracetic Acid (EDTA) using Eriochrome black-T (EBT) as an internal indicator.	2
EXP-4	To determine the coefficient of viscosity of the given sample solution by Ostwald's viscometer (Viscosity of water = 0.0101 Poise).	2
EXP-5	To determine the ferrous ion (Fe ⁺⁺) content in given sample solution of Mohr's salt (FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O) by titrating it against standard N/30 potassium dichromate (K ₂ Cr ₂ O ₇) solution by using potassium ferricyanide K ₃ [Fe (CN) ₆] as an external indicator.	2
EXP - 6	To determine the surface tension of the given sample solution by drop number method	2
EXP - 7	To determine the acid value of oil	2
EXP - 8	To determine the strength of unknown HCI solution by titratingit against N/10 NaOH solution with the help of pH meter.	2
EXP - 9	Synthesis of phenol-formaldehyde resin	2
EXP – 10	To determine the alkalinity of the given water sample containing carbonate (CO_3^2) ions and hydroxide (OH) ions by titrating it against standard HCI solution [N/10] using phenolphthalein and methyl orange as indicators.	2
EXP – 11	To determine the rate constant of a reaction	2
EXP – 12	To determine the Copper (Cu ⁺⁺) ion content in the given sample of copper ore (blue vitriol) by titrating it against standard N/30 sodium thiosulphate solution using starch as indicator by lodometric titration.	2
EXP - 13	Determination of adsorption isotherm of acetic acid on activated charcoal	2

Text Books:

- Sunita Rattan, "Comprehensive Engineering Chemistry", S.K. Kataria& SonsDelhi, India, 2nd Edition (2009) Shashi Chawala, "Theory and Practicals of Engineering Chemistry", DhanpatRai and Company, India 3rd Edition (2012) •
- •

GRAPHIC ERA (DEEMED TO BE UNIVERSITY), DEHRADUN

Name of Department: CHEMISTRY

16. **Pre-requisite**: Basic and Advanced knowledge of Organic Chemistry

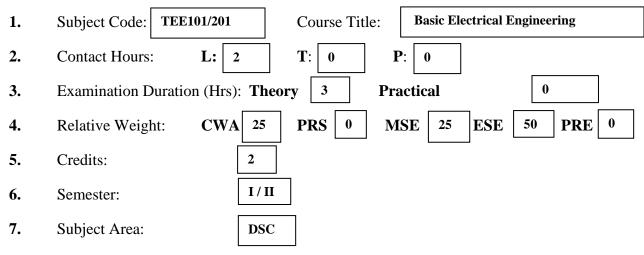
9. Course Outcomes:	• understand the basic knowledge of different techniques of purification of organic compound					
outcomes.	 explain the reaction mechanism in organic chemistry. 					
	• illustrate concepts and knowledge on nanotechnology and its application					
	• Learn and apply the concepts of analytical chemistry for sample analysis					
	• discuss the knowledge of carbohydrates and their practical application to biotechnology and engineering.					

UNIT	CONTENTS	Contact Hrs			
	PURIFICATION OF ORGANIC COMPOUNDS				
Unit - I	Crystallization sublimation, Distillation, Fractional distillation, distillation under reduced pressure, Steam distillation, Extraction with solvent, chromatography	4			

	(a) STRUCTURE OF ORGANIC COMPOUNDS	
Unit - II	Nature of covalent bond and its orbital representation. Hybridization, bond energy, polarity of bond & dipole moment of molecules, Isomerism	5
	(b) ORGANIC REACTIONS AND THEIR MECHANISM	
	Bond fission, Inductive effect, hyperconjugation, electromeric, resonance effects and their significance; Types of reagents: electrophiles & nucleophiles, Reaction intermediates: carbocation, carbanion, carbenes, and free radicals- generation, properties and stability,	7
	(c) Addition reactions, Substitution reactions, Elimination reactions in organic chemistry. Orientation in aromatic substitution reactions	7
	(a) NANOMATERIALS	
Unit - III	Introduction, Green nanotechnology, Synthesis of nanoparticlesand its applications	3
	(b) GREEN CHEMISTRY	
	Introduction, Twelve Principles of Green Chemistry, Adverse effects of chemicals, Practice of Green Chemistry	3
	Analytical Chemistry: Basics and its applications	
Unit - IV	 e. Definition of Qualitative and quantitative analysis, volumetric and gravimetric analysis. f. Principle of volumetric analysis. Concept of pH, buffer solution and Henderson equation. Concept of strength and concentration of solution, Normality, Molarity, Molality and interconversion of strength, g. Types of volumetric analysis: Acid-base, Complexometric, redox and precipitation titration (Principle and examples). h. Principle and applications of the following methods: 	8
	Chromatography: Introduction, principle & application of chromatography. Paper chromatography, thin layer	

	chromatography, column chromatography: silica and gel filtration. Thermoanalytical methods: Thermogravimetric Analysis, Thermometric Titrations Electroanalytical techniques: Electrogravimetry, Polarography and Voltametric Methods. Atomic Spectroscopy : Principle and application of atomic absorption spectroscopy and flame photometry.	
Unit - V	CARBOHYDRATES Definition, Classification, General Properties. Preparation of Glucose, its physical and chemical properties, Killiani Fischer synthesis, Ruff degradation	5
	Total	42

Textbooks:


- 4. Morrison & Boyd "Organic Chemistry",6th edition ,Pearson education
- 5. I.L.Finar, Organic Chemistry (Vol. I & II) 5th Edition 2009, Pearson Publication
- 6. Bahl and Bahl, "Advanced Organic Chemistry" by S. Chand& Company Ltd.

Reference Books:

- 5. F.W.Bill Meyer, "Text book of Polymer Chemistry, 3rd Edition 2009, W.J.Wiley India
- 6. Advanced Organic Chemistry by Bernard Mille
- 7. Organic Structural Spectroscopy by Joseph Lambert, Scott Gronert, Herbert Shurvell, David Lightner and Robert Graham Cooks
- 8. L.E.Foster, "Nanotechnology, Science Innovation & Opportunity", Pearson Education, 2007.

SEMESTER I & II

Name of Department: - Department of Electrical Engineering

8. Pre-requisite: Basic Knowledge of Physics and Mathematics

9. Course	CO1	Recall the concept of voltage, current, resistance and laws related to
Outcome:		electricity with reference to the electrical circuits/systems.
After successful	CO2	Understanding of fundamental laws and theorems used in the electrical
completion of this		circuits.
course, students	CO3	Application of network theorems/laws in electrical circuit.
will be able to:	CO4	Understanding of various electrical safety components and electrical
		wiring.
	CO5	Application of earthing/grounding.

Sl. No.	Content	Contact Hours
1	DC Circuit: Concepts of current, resistance, E.M.F., potential difference, Ohm's law, Simplifications of networks using series and parallel combinations and star-delta conversions, Kirchhoff's law, Superposition, Thevenin, Norton, Maximum Power Transfer theorem and their applications for network solutions.	10
2	Single Phase AC: Introduction of Single-Phase AC, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Single phase AC through R, L, C, and series combination of RLC.	10
3	Electrical Installations and Illumination: Wire and cables for internal wiring, switches and circuits (Two-way switch,	4

staircase wiring, go down wiring, double pole double throw switch), type of	
electrical wiring, Switch Fuse Unit (SFU), MCB, MCCB, Earthing concept and methods of earthing.	
Total	24

SL.	Name of Authors/Books/Publishers	Year of
No.		Publication/Reprint
	Text Books	
1.	D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.	2010
2.	D.C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.	2009
3.	V. N Mittle and Arvind Mittle, "Basic Electrical Engineering" Tata McGraw-Hill Education Pvt. Ltd. (2005)	2005
	Reference Books:	
1.	L.S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.	2011
2.	V.D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.	1989
3.	E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.	2010
4	L.S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.	2011

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term Exam
-----	--------------------	--

Name of Department: **Department of Electrical Engineering**

1.	Subject Code:	PEE 151/251	Course Titl	e:	Basic Electric	cal Engineering Lab
2.	Contact Hours:	L: 0	T: 0	P:	2	
3.	Examination Dur	ration (Hrs): Theor	ry	0	Practical	2
4.	Relative Weight:	CWA 25	PRS 0	MSI	E 25 ESE	50 PRE 0
5.	Credits:	1				
6.	Semester:		I / II			
7.	Subject Area:		DSC			

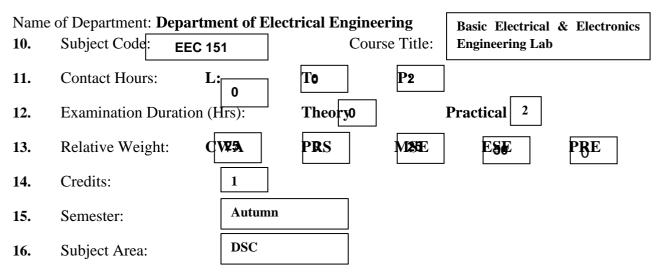
8. Pre-requisite: Basic Knowledge of Experiments in Physics

9. Course Outcome:	CO1	Apply the knowledge of circuit laws and theorems and verify the knowledge
After successful		through practical experimentation.
completion of this	CO2	Correlate the knowledge of theoretical concepts or phenomenon in context to
course, students will		the real time applications of AC systems (wiring/switches/lamps etc.) and make
be able to:		suitable assumptions to study it through lab experiment.
	CO3	Coordinate with team members to carry out the procedure with precision.
	CO4	Report the experimental results in a professional way with practical comments
		on the application to field/ industry requirements.

Sl. No.	Contents		
1.	To verify the Kirchhoff's Voltage Law (KVL) in DC Circuit.		
2.	To verify the Kirchhoff's Current Law (KCL) in DC Circuit		
3.	To Verify Superposition Theorem in DC Circuit.		
4.	To Verify Thevenin Theorem in DC Circuit.		
5.	To Verify Norton Theorem in DC Circuit.		
6.	To Verify Maximum Power Transfer Theorem in DC Circuit.		
7.	To find out the meter constant of a single-phase energy meter		
8.	To wire for a Stair-case arrangement using a two-way switch.		
9.	To measure power in a single-phase ac circuit by using wattmeter.		
10.	To draw the current versus frequency characteristics in RLC series circuit.		
11.	11. To study various electrical accessories and machines parts (cut set model)		

SEMESTER I (Biotech Group)

Name of Department: - Department of Electrical Engineering					
9.	Subject Code:	EEC 101Basic Electrical & Electronics Engineering			
10.	Contact Hours:	L: 3 T: 1 P: 0			
11.	Examination D	uration (Hrs): Theory 3 Practical 0			
12.	Relative Weigh	nt: CWA 25 PRS 0 MSE 25 ESE 50 PRE 0			
13.	Credits:	4			
14.	Semester:	Autumn			
15.	Subject Area:	DSC			
16.	Pre-requisite:	Basic Knowledge of Mathematics and Physics			
9. Coi	ırse	CO1 Recalling the concepts of basic electric circuits and remembering the			
Outco		theorems to solve DC Circuits.			
After		CO2 Summarize the various characteristics of AC Circuits.			
succes	sful	CO3 Applying the concepts of magnetic circuits to understand thebasic			
compl	etion	characteristics of single-phase Transformer.			
of this		CO4 Analyzing the basics of semiconductor devices used for electronic			
course	,	components.			
studen	its	CO5 Evaluating the basic concept of PN junction diode and itsapplications in			
will be	e able	rectifier circuits and DC power supply.			
to:		CO6 Compiling Bipolar Junction Transistor (BJT) from its basicconcepts and			
		various biasing circuits.			
12.	12. Details of the Course:				

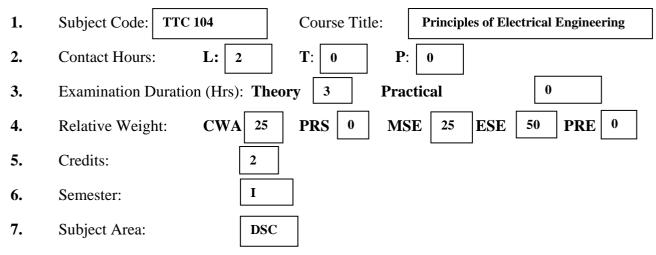

Sl. No.	Contents	Contact Hours
Unit -1	D.C. Network Theory: Circuit theory concepts-KCL, KVL, mesh and node analysis, Network Theorems- Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum Power Transfer theorem, Star Delta transformation.	07
Unit -2	A.C. Circuit Analysis: Sinusoidal and phasor representation of voltage and current, single phase a.c. circuit behavior of resistance, inductance and capacitance and their combination in series & parallel, power factor, series parallel resonance and quality factor.	07
Unit -3	Magnetic Circuits:	06

	Introduction, series-parallel magnetic circuits comparison, Eddy currentsand	
	Hysteresis losses.	
	Single Phase Transformer:	
	Principle of operation, classification, phasor diagram at no load, efficiencyand	
	all-day efficiency of transformer.	
	Semiconductor Basics:	
	Insulators, semiconductors and metals, Mobility and conductivity, Intrinsicand extrinsic semiconductors and charge densities in semiconductors, Fermi Level, current components in semiconductors, continuity equation. Junction	
Unit -4	Diode and Its Applications:	10
	PN Junction diode - characteristic and analysis, Diode Models, Rectifiers and	
	filter circuit: Half wave, full wave and Bridge rectifier circuits and their	
	analysis, L, C and Pi filters, Zener Diode, Basic regulator supply using	
	Zener diode, Design of Regulator circuits	
	TRANSISTORS:	
	Construction and characteristics of bipolar junction, transistors (BJT's)- Comm.	
Unit –5	Base, Comm. emitter, Comm. Collector configuration, Transistor biasing and	8
	bias stabilization: - the operating point, stability factor, analysis of fixed base	0
	bias, collector to base bias, Emitter resistance bias	
	circuit and self-bias circuit.	
	Total Hours	38

-

Sl. No.	Name of Authors/Books/Publishers	Year of Publication / Reprint
1	D.P. Kothari and I. J. Nagrath, " Basic Electrical Engineering ", Tata McGraw Hill.	2010
2	D.C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.	2009
3	V. N Mittle and Arvind Mittle, " Basic Electrical Engineering " Tata McGraw-Hill Education Pvt. Ltd.	2005
4	Jacob Millmann & Halkias, "Integrated Electronics", 2 nd Edition, TMH,	2010
5	Boylestad and L. Robert and Nashelsky Louis, "Electronics Devices and Circuits Theory", 9th Edition., PHI/Pearson Education.	2010

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End TermExam /
		Lab Exam


17. Pre-requisite: Physics.

18. Cour	CO1	01 Illustrate and Verification of various laws in DC circuit		
se	CO2	Illustrate and Verification of various theorems in DC circuit		
Outcomes:	CO3	Demonstrate various types of diodes and their characteristics		
	CO4	Analysis of various types of analog and digital electronic circuits		

Sl. No.		Contents		
1.	To verify Kirchhoff's voltage law (KVL) in D.C. circuits			
2.	To verify Kirchhoff's	current law (KCL) in D.C. circuits		
3.	To verify superpositio	n theorem for DC circuits.		
4.	To verify Thevenin's t	heorem for DC circuits		
5.	To verify Norton's the			
6.	To verify maximum p	To verify maximum power transfer theorem in DC circuits.		
7.	Study of PN junction diode and its characteristics			
8.	Study of ZENER junction diode and its characteristics			
9.	Study of half wave rectifier with and without capacitive filter			
10.	Study of full wave rectifier with and without capacitive filter			
11.	Study of BJT in CB /C	E configuration		
12.	Verification of basic and derived gates.			
13.	Realization of basic gates through universal gates.			
11.	Mode of Evaluation Viva / Mid Term Lab Exam / End Term Lab Exam			

SEMESTER I

Name of Department: - **Department of Electrical Engineering**

8. Pre-requisite: Basic Knowledge of Physics and Mathematics

9. Course	CO1	Recall the concept of voltage, current, resistance and laws related to
Outcome:		electricity with reference to the electrical circuits/systems.
After successful	CO2	Understanding of fundamental laws and theorems used in the electrical
completion of this		and magnetic circuits.
course, students	CO3	Application of network theorems/laws in electrical and magnetic
will be able to:		circuits.
	CO4	Understanding of various electrical safety components and electrical wiring.
	CO5	Application of earthing/grounding.
	CO6	Understanding of measuring devices and sensors

Sl. No.	Content	Contact Hours
1	Introduction: Concept of Potential difference, voltage, current, Fundamental linear passive and active elements to their functional current- voltage relation, Terminology and symbols in order to describe electric networks, voltage source and current sources, ideal and practical sources, concept of dependent and independent sources, Kirchhoff-s laws and applications to network solutions using mesh and nodal analysis, Concept of work, power, energy, and conversion of energy.	5
2	DC Circuits: Current-voltage relations of the electric network by mathematical equations to analyze the network (Thevenin's theorem, Norton's Theorem, Maximum Power Transfer theorem) Simplifications of networks using series-parallel, Star/Delta transformation. Superposition theorem.	6
3	AC Circuits: AC waveform definitions, form factor, peak factor, study of R-L, R-C,RLC series circuit, R-L-C parallel circuit, phasor representation in polar and rectangular form, concept of impedance, admittance, active, reactive, apparent and complex power, power factor, 3 phase Balanced AC	5

	Circuits $(\lambda - \Delta \& \lambda - \lambda)$.	
4	Magnetic Circuit and Single Phase Transformer: Magnetic circuit, Single phase transformer, principle of operation, EMF equation, voltage ratio, current ratio, KVA rating, efficiency and regulation.	4
5	Measurements and Sensors: Introduction to measuring devices/sensors and transducers (Piezoelectric and thermo-couple) related to electrical signals, Elementary methods for the measurement of electrical quantities in DC and AC systems (Current & Single-phase power). Electrical Wiring and Illumination system, Types of Wiring System & Wiring Accessories, Necessity of earthing, Types of earthing, Safety devices & system.	4
	Total	24

SL.	Name of Authors/Books/Publishers
No.	
	Text Books
1.	<i>Electric Machinery</i> , (Sixth Edition) A. E. Fitzgerald, Kingsely Jr Charles, D. Umans Stephen, Tata McGraw Hill.
2.	A Textbook of Electrical Technology, (vol. I), B. L. Theraja, Chand and Company Ltd., New Delhi.
3.	Basic Electrical Engineering, V. K. Mehta, S. Chand and Company Ltd., New Delhi.
4	<i>Theory and problems of Basic Electrical Engineering,</i> (Second Edition), J. Nagrath and Kothari, Prentice Hall of India Pvt. Ltd.
	Reference Books:
1.	<i>Basic of Electrical Engineering</i> , T. K. Nagsarkar and M. S. Sukhija, Oxford University Press. T. K. Nagsarkar and M. S. Sukhija, Basic of Electrical Engineering, Oxford University Press, 2011.
2.	Introduction to Electrodynamics, D. J. Griffiths, (Fourth Edition), Cambridge University Press.
3.	<i>Engineering Circuit Analysis,</i> William H. Hayt & Jack E. Kemmerly, McGraw-Hill Book Company Inc.
4	<i>Fundamentals of Electrical and Electronics Engineering</i> , Smarjith Ghosh, Prentice Hall (India) Pvt. Ltd.

12.	Mode of Evaluation	Test / Quiz / Assignment / Mid Term Exam / End Term Exam	
-----	--------------------	--	--

Name of Department: **Department of Electrical Engineering**

1.	Subject Code:	PTC 104	Course Titl	e:	Electrical En	igineering Lab	
2.	Contact Hours:	L: 0	T: 0	P: 2	2]
3.		cation (Hrs): Theo		0	 Practical	2	
4.	Relative Weight:		PRS 0	MSE	25 ESE	50 PRE	0
5.	Credits:						
6.	Semester:		I				
7.	Subject Area:		DSC				

8. Pre-requisite: Basic Knowledge of Experiments in Physics	: Basic Knowledge of Experim	nents in Physics
--	------------------------------	------------------

9. Course	CO1 Apply the knowledge of circuit laws and theorems and verify the knowledge
Outcome:	through practical experimentation.
After	CO2 Correlate the knowledge of theoretical concepts or phenomenon in context to
successful	the real time applications of AC systems (wiring/switches/lamps etc.) and
completion of	make suitable assumptions to study it through lab experiment.
this course,	CO3 Coordinate with team members to carry out the procedure with precision.
students will	CO4 Report the experimental results in a professional way with practical comments
be able to:	on the application to field/ industry requirements.

Sl. No.	Contents						
1.	To verify the Kirchhoff's Voltage Law (KVL) in DC Circuit.						
2.	To verify the Kirchhoff's Current Law (KCL) in DC Circuit						
3.	To Verify Superposition Theorem in DC Circuit.						
4.	To Verify Thevenin Theorem in DC Circuit.						
5.	To Verify Norton Theorem in DC Circuit.						
6.	To Verify Maximum Power Transfer Theorem in DC Circuit.						
7.	To find out the meter constant of a single-phase energy meter.						
8.	To wire for a Stair-case arrangement using a two-way switch.						
9.	To measure the power and power factor of a three-phase balanced circuit by using two						
	wattmeter method.						
10.	To draw the current versus frequency characteristics in RLC series circuit.						
11.	To measure power in a single-phase ac circuit by using wattmeter.						
12.	To study various electrical accessories and machines parts (cut set model)						
11.	Mode of Evaluation Viva / Mid Term Lab Exam / End Term Lab Exam						

٦

SEMESTER I/II

Name of Department: - Electronics and Communication Engineering

1.	Subject Code: TEC 101	Course Title:	Basic Electronics Engineering
2.	Contact Hours: L:	T: 0 P: 0	
3.	Examination Duration (Hr	Theory 3 Pract	tical 0
4.	Relative Weight: CIE	5 MSE 25 SEE 50	
5.	Credits:		
6.	Semester:	rst/Second	
7.	Category of Course:	C	

8. Pre-requisite: Physics

9. Course After completion of the course the students will be able	to:
9. Course Anter completion of the course the students will be able Outcome: CO1: Remember operations on number systems an concepts of digital circuits. CO2: Understand the basics of semiconductors and diode. CO3: Apply the basics of PN junction diode in rectified DC power supply. CO4: Analyze Bipolar Junction Transistor (BJT) fr concepts and biasing circuits. CO5: Evaluate the performance of operational amplified from its performance parameters like gain, CMRR, offsed CO6: Design and develop various basic electronic circuits	nd understand d PN junction er circuits and rom its basic ifier (OP-amp) et values etc.

SI. No.	Contents	Contact Hours
1	Unit 1: Number Systems & Boolean Algebra: Number systems and their conversion, Logic gates, Boolean algebra, Implementation of basic gates using universal gates, Implementation of logic functions using basic gates & universal gates, SOP & POS form of logic expression, Canonical form, Conversion from SOP & POS form to canonical form, Simplification of Boolean function: Algebraic method, Karnaugh map method (two, three & four variable K-map with don't care condition).	10

	Unit 2:								
	Basics of Semiconductor Devices:								
2	Energy band theory: Classification of solids based on energy band diagram, Semiconductors; Intrinsic semiconductors, Extrinsic semiconductors– P-type and N-type, Electrons and holes in intrinsic and extrinsic semiconductors, Mobility and conductivity, Mass action law, Charge densities in semiconductors, Drift and diffusion current, P-N Junction; Formation of depletion region, V-I characteristics of P-N junction diodes, Diode breakdown mechanism.	8							
	Unit 3: AC to DC Conversion:								
3	Introduction to DC power supply, Rectifiers circuit: Half wave, Center tapped full wave and Bridge rectifier circuits. Rectifier performance parameter analysis, Filter circuits: L, C, and Pi filters, Zener diode, Zener diode as a voltage regulator.	8							
	Unit 4:								
4	Basics of Bipolar Junction Transistor (BJT): Construction of bipolar junction transistors (BJT), NPN and PNP type transistor, Characteristics; Common base, Common emitter, Common collector configuration, Operating point.	8							
	Unit 5:								
5	Introduction to Operational Amplifiers: Introduction to integrated circuits; Advantages and limitations, Characteristics of an ideal Op-amp, Introduction of 741 IC. Inverting and non-Inverting Op-amp circuits, Summing amplifier, Difference amplifier, Voltage follower.	6							
	Total	40							

SL.	Name of Authors/Books/Publishers	Edition	Year of Publication
No.			/ Reprint
	Textbooks		
1.	Jacob Millmann & Halkias, " <i>Integrated Electronics</i> ", TMH, 2 nd Edition, 2009.	2 nd	2009
2.	M. Morris Mano, Michael D. Ciletti, " <i>Digital Design</i> ", Pearson Education, 5 th Edition, 2012.	5 th	2012
	Reference Books		
1.	Boylestad and L. Robert and Nashelsky Louis, " <i>Electronics Devices and Circuits Theory</i> ", Pearson Education, 10 th Edition, 2009.	10 th	2009
2.	S. Salivahanan and S. Arivazhagan, " <i>Digital Circuits and Design</i> ", Oxford University Press, 5 th Edition, 2018.	5 th	2008

SEMESTER I/II

Name of Department: - Electronics and Communication Engineering

1.	Subject Code: PEC 1	51/251	Course Title:				Electronics pring Lab
2.	Contact Hours: L:	0	T: 0	P: 2	2		
3.	Examination Duration (Hrs.):	Theory	0	Pra	ctical	3
4.	Relative Weight: CI	25	MSE	25 SI	EE	50	
5.	Credits:	1					
6.	Semester:	First/	Second				
7.	Category of Course:	DC					
-							

8. Pre-requisite: Physics

9. Course	After completion of the course the students will be able to:								
Outcome:	CO1: Identify and understand active & passive components along								
	with various measuring instruments.								
	CO2: Verify truth table of logic gates.								
	CO3: Analyse the characteristics of diodes and transistors.								
	CO4: Implement different electronics circuits using operational								
	amplifier and logic gates.								

SI.	List of problems for which student should develop	Contact
No.	program and execute in the Laboratory	Hours
13.	Familiarization of electronics measuring instrument and components.	2
14.	Measure the voltage and frequency using a DSO.	2
15.	Study and verification of the truth table for logic gates.	2
16.	To design and verify the truth table for logic gates using NOR gate.	2
17.	To design and verify the truth table for logic gates using NAND gate.	2
18.	Study V-I characteristics of PN junction diode and determine the static and dynamic resistance from the characteristic curve.	2
19.	Study of a Half wave rectifier circuit with and without capacitor filter.	2

20.	Study of a Centre tapped full wave rectifier circuit with and without capacitor filter.	2
21.	Study of a bridge full wave rectifier circuit with and without capacitor filter.	2
22.	Study V-I characteristics of Zener diode.	2
23.	Study the input and output characteristics of common base (CB) transistor.	2
24.	Study the input and output characteristics of common emitter (CE) transistor.	2
	Total	24
	Innovative Experiments	
13.	Study the input and output characteristics of common collector (CC) transistor.	02
14.	Design and verification of Inverting and non-inverting amplifier using Op-Amp IC.	02
15.	As suggested by the concerned faculty/lab in charge.	02

12.	Mode	of	Test / Quiz / Assignment / Mid Term Exam / End
	Evaluation		Term Exam

SEMESTER I and II

Name of Department: - Mechanical Engineering

1.	Subject Code:	1/251	Course Title:			Workshop and Manufacturing				g		
2.	Contact Hours:	L: 1		T :	0	P: 4	I		es			
3.	Examination Duration (Hrs):			Theory 3 Pi			Pr	ractical 0				
4.	Relative Weight	CIE	25	PRS	0	MSE	25	SEE	50	PRE	0	
5.	Credits:	[3									
6.	Semester:		Ι									
7.	Category of Course:		SEC									
0	Dro roquisito:	mor										

8. Pre-requisite: Basic Grammar

9. Course	After completion of the course the students will be able to:
Outcome**:	 CO1: To identify various conventional, non-conventional and automated manufacturing techniques. CO2: To explain various manufacturing practices used for the production of work pieces in different shops like carpentry, welding, sheet metal etc. CO3: To apply the principles of manufacturing in fabrication of
	jobs. CO4: To analyze properties of different used for fabrication of jobs. CO5: To generate design for fabrication of jobs.

** Describe the specific knowledge, skills or competencies the students are expected to acquire or demonstrate.

SI. No.	Contents	Contact Hours
1	Introduction to Manufacturing Introduction to manufacturing, 3M's of manufacturing – man, machine and material, Types of manufacturing process, Manufacturing shops – machine shop, fitting shop, carpentry shop, welding shop, sheet metal shop, black smith shop, foundry shop, Introduction to advance manufacturing, Safety and precaution in workshop.	5
2	Machine Shop: Introduction to machining process, Measuring and marking tools	4

	used in machine shop, Part of lathe and drilling machine, Working principle of lathe and drilling, Tools use in lathe, Materials. 17. To make work piece using facing and turning operation. 18. To make work piece using step turning and thread making operation.	
3	Foundry Shop: Introduction to foundry, Pattern material-wood, cast iron, brass, aluminum, waxes etc., Types of patterns, Types of tools, Mounding sands – green sand, dry sand, loam sand, facing sand, etc., Sand casting-Sand preparation, mould making, melting, pouring and cleaning. 19. To prepare mould of casting using a single piece pattern. 20. To prepare mould of casting using a split pattern.	4
4	 Sheet Metal Shop: Introduction to sheet metal shop, Tools use in sheet metal shop, Types of operations, Fabrication of daily use items such as funnel tray, etc. 21. To make a funnel using sheet metal forming (Material: 24 SWG) of given dimensions. 22. To make a square tray using sheet metal forming (Material: 24 SWG) of given dimensions. 	3
5	 Fitting Shop: Introduction to fitting, Types of tools used in fitting shop for measuring, marking, cutting etc., callipers and Vernier calliper, materials used in tools. 23. To make a square piece of mild steel of given dimensions. 24. To make a fitting job of given profile and dimensions. 	4
6.	 Welding Shop: Introduction to welding, Classifications of joining process, Arc welding process-power source, electrodes, edge preparation, Different types of joints. Electric arc welding, Metal inert gas welding, Tungsten inert gas welding. 25. To prepare a butt (Single-V)/ fillet joint through electric arc welding. 26. To prepare a butt (Single-V)/ fillet joint through TIG/MIG welding. 	
7.	Carpentry Shop: Introduction to carpentry shop, Wood and its type, Classification of timber, Seasoning and preservation of wood, Description and applications of the various tools used in carpentry, Different joints and their practical uses.	

	27. To make corner-lap/ center – lap joint. 28. To make a mild steel chisel/ nail.	
	Black smith shop:	
8.	Introduction to black smithy shop, Tools used in black smithy shop, Types of operations, Properties of metal- ductility, malleability, strength, etc.	
	29. To make a aquare of round mild steel bar. 30. To make a mild steel chisle/ nail.	
	Non-conventional and Automated Manufacturing Techniques:	
9.	 31. Demonstration of Non-conventional fabrication techniques-3D Printing, Laser Cutting. 22. Demonstration of Automated manufacturing techniques CNC 	
	32. Demonstration of Automated manufacturing techniques-CNC, Master CAM software, Application of Industrial Robot, Assemble line in Manufacturing Execution System.	
	Total	30

SEMESTER I and II

Name of Department: Mechanical Engineering

11.	Subject Code: PME	E 153-253	Course Title:	Engineering Graph	nics & Design
12.	Contact Hours: L: 1	T:	0 P: 4		
13.	Examination Duration (H	Irs): Theo	ory 0 F	Practical 3	
14.	Relative Weight: CWA	25 PI	$\mathbf{RS} 0 \mathbf{M} 2$	5 50	0
15.	Credits: 3				
16.	Semester: Autumn/Spi	ring			
17.	Subject Area: DSC				

18. Pre-requisite: No prerequisites

19. Course Outcomes: Upon completion of this course, students will be able to

CO5. Construct Engineering drawings as per BIS conventions manually and using CAD software to prepare Orthographic projections of Points and Lines.
CO6. Use the knowledge of Orthographic projections to represent Engineering concepts of Planes.
CO7. Develop Projections of Solids and lateral surfaces of solids by analyzing the given problems.
CO8. Construct isometric drawings after analyzing the combination of simple solids

20. Detailed Syllabus

S.L. No.	CONTENTS				
	Introduction to Computer Aided Sketching				
	Introduction, Drawing Instruments and their uses, BIS conventions, lettering,				
1	Dimensioning and free hand practicing. Computer screen, layout of the software,				
	andard tool bar, and description of most commonly used tool bars, navigational tools.				
	Coordinate system and reference planes. Definitions of HP, VP, RPP& LPP. Creation				
	of 2D/3D environment. Selection of drawing size and scale. Commands and creation				

	Total	75
CAD Softwares:	3. AUTOCAD4. CREO 2.0	
6	Demonstration of a Simple Team Design Project that Illustrates Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid- modeling software for creating associative models at the component and assembly levels.	10
5	Isometric Projections: Principles of Isometric projection - Isometric Scale, Isometric Views, Conventions, Isometric views of planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice - Versa.	10
4	Development of lateral surfaces of solids: Sections of right regular prisms, pyramids, cylinders and cones resting with base on HP. Development of lateral surfaces of above solids, their truncations.	10
3	Projections of Solids: Projections of right regular prisms, pyramids and cones with axis inclined to both the planes. (Solids resting on HP only)	10
2	of lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line convention, material conventions and lettering. Computer Aided Design(CAD) software: Modeling of parts and Assemblies. Orthographic projections of points, lines and planes: Introduction, Definitions - Planes of projection, reference line and conventions employed. First angle and Third angle projection. Projections of points in all the four quadrants. Projection of lines (located in first quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes (No application problems) Projection of planes : triangle, square, rectangle, pentagon, hexagon, and circle, planes in different positions by change of position method only (No problems on punched plates and composite plates.)	25

SL. No.	Name of Authors/Books/Publishers	Year of
		Publication/Reprint
	Text Books	·
1.	Engineering Graphics- K.R. Gopalakrishna, 32 nd edition, - Subash Publishers, Bangalore.	2005
2.	Computer Aided Engineering Drawing – S. Trymbaka Murthy, - International Publishing house Pvt. Ltd., New Delhi, 3 rd revised edition.	2006
	Reference Books	·
1.	Engineering Drawing- N.D. Bhatt and V.M. Panchal, 48th edition, Charotar publishing House, Gujarat.	2005

GRAPHIC ERA (DEEMED TO BE UNIVERSITY) DEHRADUN SEMESTER I

Name of Department: Biotechnology							
1 vanie	-				FUNDA MEDICA	AMENTALS L	OF
13.	Subject Code: TBT 10	01	Course Title:	L			
14.	Contact Hours: L:	2	T:	P:	0		
15.	Examination Duration (Hrs)	: Theory	3		Practical	0	
16.	Relative Weight: CIE	25	PRS 0	MSE	25 SEE	50 PRE	0
17.	Credits:	3					
18.	Semester:						
19.	Subject Area:	SEC					

20. Pre-requisite: Basic Science.

21. Course Objectives: The objective of this course is to provide a basic understanding of biological mechanisms of living organisms from the perspective of engineers. In addition, the course is expected to encourage engineering students to think about solving biological problems with engineering tools.

22. Course Outcome:

Course	After completion of the course the students will be able to:				
Outcom	CO1: Learn about human microflora and understand basic mechanism of				
e:	action of various medically important bacterial microbes				
	CO2: know basic mechanism of action of various medically important fungal				
	and Viral infections and their diagnostic procedures.				
	CO3: Understanding the concept of immune system and their correlation with				
	Microbes.				
	CO4: Utilize biotechnology tools in medical therapeutic and summarize the				
	diagnostic techniques for common human diseases.				
	CO5: understanding of good laboratory practices followed in medical				
	biotechnology laboratory.				

UNIT	Contents	Conta
		ct
		Hou
		rs

	Commensal & Pathogenic Bacteria	8
	Normal microflora of human body: Skin, Respiratory system and	
Unit - I	Genitourinary tracts. Source of infection, mode of spread and portals of	
Unit - 1	entry.	
	Common pathogenic bacteria: Introduction of morphology,	
	characterization, pathogenicity, lab diagnosis, prophylaxis of	
	Staphylococcus, Streptococcus, Neisseria, Corynebacterium, Bacillus,	
	Clostridium, Mycobacteria, Hemophilus, Escherichia coli, Pseudomonas.	0
TT TT	Introduction to Pathogenic Fungi & Viruses	8
Unit - II	Fungi: Introduction to morphology, symptoms, lab diagnosis and	
	prevention of Mycoses. Viruses: Morphology, pathogenicity, prophylaxis, Diagnosis of viruses:	
	Herpes, viruses, Orthomyxxovirus, Polio viruses, Hepatitis viruses;	
	Rabies viruses, Human immunodeficiency viruses, COVID -19 viruses.	
		0
UNIT III	Immunology Components of Immune system: Types of immunity, barriers of natural	8
	immunity, cells and organs of immune system, properties of antigen and	
	antibody, interaction of antigens with various immune cells and organs,	
	types of antibodies and their significance in host-pathogen interaction.	
	Management and Quality Control of Medical Biotechnology	10
	Laboratory	10
	Specimen Collection : Collection of clinical specimens from patients,	
Unit – IV	clinics, hospitals, for diagnosis and processing, training of medical	
	biotechnologist to handle epidemics.	
	Quality Control: Selective cultural media, identification by special tests,	
	biochemical reactions and sero-typing of pathogenic bacteria. Antibiotic	
	susceptibility testing, its interpretation and reporting.	
	Hospital infection control: Quality control in diagnostic microbiology,	
	National programmer for control of infectious diseases.	
	Applications of Medical Biotechnology	8
Unit –V	Tools and techniques: Hybridoma technology, biopharming-subunit	
	vaccines, DNA vaccines, recombinant vaccines, therapeutic enzymes,	
	basic biomedical tools in diagnosis, treatment, prevention of diabetes	
	(Insulin production), cancer (Detection of cancer antigens),	
	transplantation.	40
	TOTAL LECTURES	42

S.No.	Name of Authors/Books/Publishers	Year of Publication/ Reprint
	Text Books	
1.	Microbiology 10th Edition. Prescott, L.M.; Harley, J.P. and Klein, D.A. (2013) McGraw-Hill Education; USA.	2017
2.	Biology for Engineers. GK Suraishkumar, Oxford Higher Education, Oxford University Press.	2019
3.	Biomedical instrumentation, Technology and applications, R. Khandpur, McGraw Hill Professional, 2004	2004
4.	Kuby Immunology. Thomas J. Kindt, Barbara A. Osborne,, Richard Goldsby. W. H. Freeman, 8 th edition	2018
5.	Ananthanarayan and Paniker's Textbook of Microbiology, The Orient Blackswan; 10th edition.	2017
	e-	
1.	Resources NDL <u>https://ndl.iitkgp.ac.in/homestudy/science</u>	2020
2.	https://epgp.inflibnet.ac.in/ (e PG-Pathshala)	2020
3.	http://ugcmoocs.inflibnet.ac.in/ (UGC Moocs)	2020
4.	https://swayam.gov.in/ (Swayam)	2020

SEMESTER II

Name of Department: - HUMANITIES AND SOCIAL SCIENCES

1.	Subject Code	e: TTC 203	3	Cour	se Title:	Fundar	nental	s of Ec	conomics	
2.	Contact Hour	rs: L:	2 T:	0	P: 0					
3.	Examination	Duration (Hr	s): Th	eory 3		Practical	0			
4.	Relative Weig	ght: CIE	25 PR	S 0	MSE	25 SEE	50	PRE	0	
5.	Credits:		2							
6.	Semester:		II							
7.	Category of 0	Course:	DC							
8.	Pre-requisite	Basio	c Knowledge	e of Econ	omics					
9. Course Outcome:After completion of the course the students will be able to:0. CO1: Define the basic principles of microeconomics and macroeconomics theory. CO2: Understand the efficiency and equity implications of market interference, including government policy. CO3:Demonstrate the factors determining gross domestic product, employment, the general level of prices, and interest rates in the economy. CO4: Analyze economic problems and prescribe solutions. CO5: Evaluate how economic concepts can be applied to analyze real life situations. CO6: Create ability to comprehend the interaction between domestic economy and the rest of the world.										

SI. No.	Contents	Contact Hours
1	Principles of Demand and Supply – Supply Curves of Firms – Elasticity of Supply; Demand Curves of Households – Elasticity of Demand; Equilibrium and Comparative Statics (Shift of a Curve and Movement	

	along the Curve); Welfare Analysis – Consumers' and Producers' Surplus – Price Ceilings and Price Floors.	
2	Consumer Behaviour – Axioms of Choice – Budget Constraints and Indifference Curves; Consumer's Equilibrium – Effects of a Price Change, Income and Substitution Effects -Derivation of a Demand Curve; Applications – Tax and Subsidies – Intertemporal Consumption – Suppliers' Income Effect.	9
3	Theory of Production – Production Function and Iso-quants – Cost Minimization; Cost Curves – Total, Average and Marginal Costs – Long Run and Short Run Costs; Equilibrium of a Firm Under Perfect Competition; Monopoly and Monopolistic Competition.	9
4	National Income and its Components – GNP, NNP, GDP, NDP; Consumption Function; Investment; Simple Keynesian Model of Income Determination and the Keynesian Multiplier; Government Sector – Taxes and Subsidies; External Sector – Exports and Imports.	9
5	Money – Definitions; Demand for Money -Transactionary and Speculative Demand; Supply of Money – Bank's Credit Creation Multiplier; Integrating Money and Commodity Markets – IS, LM Model; Business Cycles and Stabilization – Monetary and Fiscal Policy – Central Bank and the Government; The Classical Paradigm – Price and Wage Rigidities – Voluntary and Involuntary Unemployment.	10
	Total	45

SL.	Name of Authors/Books/Publishers/Place of	Edition	Year of Publication
No.	Publication		/ Reprint
	Textbooks		
1.	N. Gregory Mankiw- Economics: Principles and	4 th	2007
	Applications, Cengage Learning India Private	Edition	
	Limited.		
2.	Karl E. Case and Ray C. Fair-Principles of	8 th	2007
	Economics, Pearson Education Inc.	Edition	
3.	H.L.Ahuja -Principles of Microeconomics, S Chand	22th	2016
	Publications.	Edition	
4.	F.Dornbusch & J. Startz- Macroeconomics,	7 th	2010
	McGraw Hill.	Edition	

6.	H.L. Ahuja- Macroeconomics Theory and Policy, S	20 th	2016
	Chand Publications.	Edition	
	Reference Books		
1.	A.Koutsoyiannis- Modern Microeconomics,	2 nd	1979
	Macmillan Education U.K.	Edition	
2.	M. L. Jhingan - Macro Economic Theory, McGraw	13 th	2016
	Hill.	Edition	
3.	N.G. Mankiw- Macroeconomics, Worth Publishers.	7 th	2010
		Edition	

12.	Mode	of	Test / Quiz / Assignment / Mid Term Exam / End Term Exam
	Evaluation		

SEMESTER I/II

Name	Name of Department: - Environmental Science				
1.	Subject Code: TEV 101	/201	Course Title:	Environmental Science	
2.	Contact Hours: L: 2	T :	0 P: 0		
3.	Examination Duration (Hrs	s): The	eory 3 P	Practical 0	
4.	Relative Weight: CIE	- PR	S - MSE -	SEE 100 PRE -	
5.	Credits:	0			
6.	Semester:	I			
7.	Category of Course:	Value Add	lition Course		

8. Pre-requisite: General Science

9. Course	After completion of the course the students will be able to:		
Outcome**:	1. Create environmental awareness and knowledge.		
	 Encourage participation in environmental conservation practices. 		
 Develop critical thinking and apply those to the analy problem or question related to the environment. 			
	 Evaluate impact of various human induced activities on the environment. 		
	5. Design possible solutions to the real environmental problems.6. Apply research and innovation related with different aspects of environmental science.		

S.No.	Contents	
		Hours
1	 Environmental Science and Ecosystem a. Definition of Environmental Science, multidisciplinary nature, Objective, scope and importance. b. Concept of an ecosystem, structure and function, energy flow, ecological succession, food chains, food webs, ecological pyramids. c. Introduction, types, characteristic features, structure and 	8

	for a fine of the fellowing a second to the	
2	 function of the following ecosystem: Forest ecosystem Grassland ecosystem Desert ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) Natural Resources and Biodiversity a. Renewable and non- renewable resources. b. Natural resources and associated problems: Forest resources: Use and over-exploitation, deforestation, case studies, Timber extraction, mining, dams and their effects on forests and tribal people. Water Resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams – benefits and problems, water conservation, rainwater harvesting, watershed management. Mineral Resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies. Food Resources: World food problems, Changes in land use by agriculture and grazing, Effects of modern agriculture, Fertilizer/ pesticide problems, Water logging and salinity Energy Resources: Increasing energy needs, Renewable/ non renewable, Use of Alternate energy sources, urban problems related to energy, Case studies Land Resources: Land as a resource, land degradation, man-induced land-slides, soil erosion and desertification, wasteland reclamation Role of an individual in conservation of natural resources, equitable use of resources for sustainable lifestyles. Definition of biodiversity, levels of biodiversity, value of biodiversity threats to biodiversity (habitat loss, poaching of wildlife, man-wildlife conflicts). Biodiversity at global, national and local levels, India as a 	16
	biodiversity, threats to biodiversity (habitat loss, poaching	
3	 Environmental Pollution a. Definition, causes, effects and control measures of Air Pollution, water pollution, soil pollution, marine pollution noise pollution, thermal pollution, nuclear hazards. b. Solid waste Management: causes, effects and control measures 	8

	of urban and industrial wastes. c. Role of an individual in prevention of pollution, pollution case studies, pollution case studies.	
4	 Important Environmental and Social Issues, Management and Legislation a. Climate change, global warming, acid rain, Ozone layer depletion, nuclear accidents and holocaust. Case studies. b. Sustainable development, Resettlement and rehabilitation of people (its problems and concerns, case studies), Environmental ethics (issues and possible solutions), consumerism and waste products. c. Disaster management: floods, earthquake, cyclone and landslides. d. Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act. 	4
	Total	36

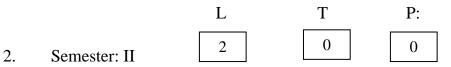
S.No.	Name of Authors/Books/Publishers/Place of Publication	Edition
	Textbooks	
1.	Deswal, S. & Deswal A.: A Basic Course in Environmental Studies; Dhanpat Rai & Co.	2013
2	Srivastava Smrti: Environmental Studies; Katson books.	2007
3.	Textbook for Environmental Studies	2004
	Reference Books	
1.	Joseph K. & Nagendran R.: Essentials of Environmental studies; Pearson Edition	2005
2.	Santra S. C., Environmental Science; Central Book Agency.	2011

SEMESTER I

	-			
1.	Subject Code:	THU 101	Course Title:	Professional Communication
2.	Contact Hours: L	TP: 2	0	0
3.	Examination Dura	ation (Hrs): 7	Theory 3	0
4.	Relative Weight:	CWA	25 PRS 0 MS	SE 25 ESE 50
5.	Credits:	2		
6.	Semester:	A	utumn	
7.	Subject Area:	A	bility Enhancement	
8.	Pre-requisite: B	asic Grammar		
9. Cou	rse Outcome:	 in correct En Enhance the Develop and speaking ski speaker. Demonstrate and relations Use the skil 	glish. r speaking skills through inderstanding of effective lls which will instill in the advanced interpersonal c hip building skills.	at it is easier to converse and write n improvement in their vocabulary. e nonverbal expressions and nem the confidence of a good communication, business etiquette nmunication in their professional

Name of Department: - Professional Communication

Sl. No.	Contents	Contact Hours
1	FUNCTIONAL GRAMMAR Sentence correction based on Nouns, Pronoun, Adjective, Verb, Adverb, Preposition, Conjunction, Modals and Tenses	10
2	REMEDIAL ENGLISH Subject-Verb Agreement, Modifiers, Avoiding Indianism	4
3	VERBAL COMMUNICATION Introduction to effective communication, Evolution, Principles, Barriers, Communication based on Formality, Media and Party, Role play: Mock Sessions	5


4	NON-VERBAL COMMUNICATION Characteristics, Components: Paralanguage, Kinesics and Proxemics	5
5	CORPORATE COMMUNICATION Memo writing, Notice and Report writing, Agenda and Minutes of the meeting	6
	Total	30

SL.	Name of	Authors/Books/Publishers	Year of
No.			Publication/Re
			print
	Textbooks		
1.	Chetananand Singh, English	s Easy, BSC Publishing Co. Pvt. Ltd. III Edition	2018
2.	Sanjay Kumar and Pushp Lata Press, II Edition	2015	
3.	R. P. Singh, Professional Con	2015	
			(Impression:
		2022)	
	Reference Books		
1.	Wren & Martin (Dr. N.)	D.V. Prasada Rao), English Grammar and	2022
	Composition, Blackie Let Pub		
2.	Technical Communication	2022	
	Oxford University Press, IV		
12.	Mode of Evaluation To	est / Quiz / Assignment / Mid Term Exam / End Te	rm Exam

Course Title: Advanced Professional Communication

Subject Code: THU-201

1. Contact Hours: 30 hours

3. Mode of Examination: Written

Course Outcomes: After completion of the course students will be able to:

- CO1. Understand the significance of impressive and word limited writing.
- CO2. Apply the writing skills into writing for employment and for corporate communication.
- CO3. Evaluate and assess the speaking patterns of self and others to excel in interviews and extemporaneous speaking.
- CO4. Analyse the impact of interpersonal skills in communication.
- CO5. Create a distinctive idea of listening and negotiating by applying the oral and verbal communication skills

CONTENTS	Practical work	Contact Hrs
Unit – IWriting SkillsPrécis writing: Do's and don'tsParagraph Writing –Descriptive, Imaginative, Analytical and informative (150 words)Story Writing (300 words)	 Exercises to be given to instill in the students the précis skills. Making it mandatory for students to read good easy books, autobiographies, newspaper 	6
Unit II <i>Technical Writing</i> CV/Resume Job Application Letter E-mails	 Teach the students the components that make a CV. Elucidate the importance of writing a perfect cover letter. Making the students understand the need of emails. 	5
Unit III	1) Mock interview sessions to be conducted as	6

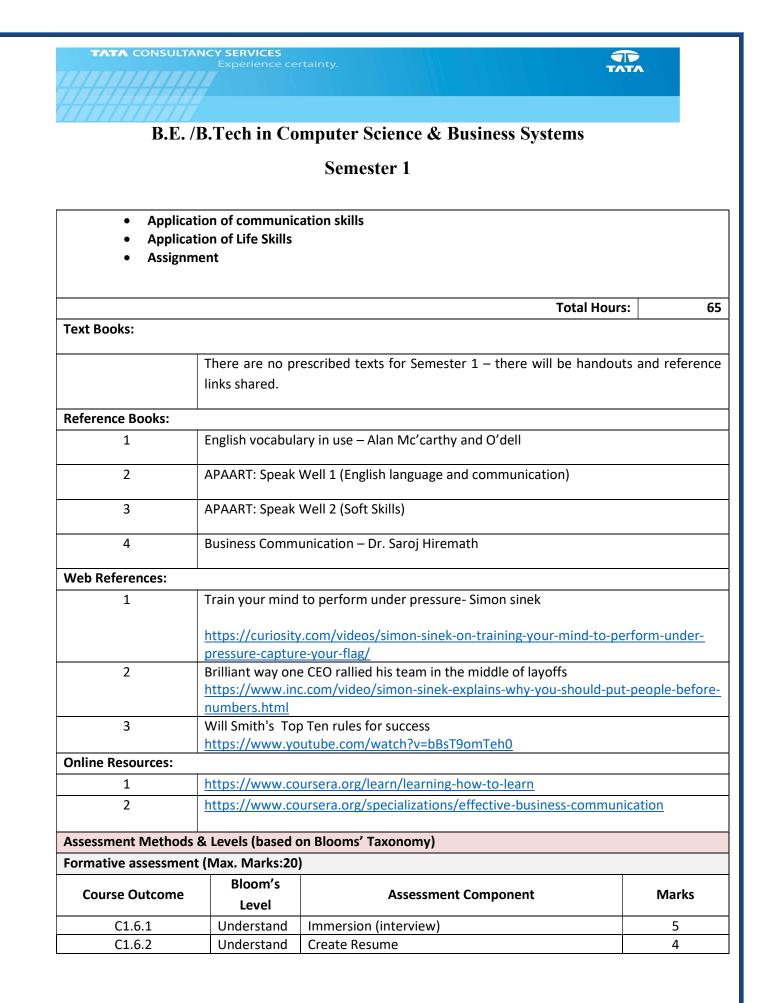
<i>Soft Skills-I</i> Interviews- definition, purpose, preparation,	part of practical exercise. Giving students the feedback of their limitations.	
types, do's and don'ts simulation exercise Extempore speaking: simulation exercises Transitive/linking words.	2) Showing some good videos on interview, available on net.	
JAM session: simulation exercise	3) Making all students to deliver a talk of their choice. This must be done as a surprise class task, to assess the speakers' ability to speak. Corrections to be done without discouraging the speakers.	
	4) Hold JAM competition at class level, Reward the good speakers and organize inter- departmental sessions to encourage maximum participation. Every student must be encouraged to speak in JAM.	
Unit IV Soft Skills-II	1) Group discussion sessions must be done regularly. Urge each student to give his/her opinions on the subject being discussed. Lat there he near evaluation of	
Group discussion: definition, purpose, organization, do's and don'ts, qualities judged, types of topics, simulation exercise Presentation skills: process, components,	discussed. Let there be peer evaluation of the performance. Allot marks at the end of each GD Session. This will encourage the students to speak.	8
principles, effective skills, methods of speaking, audience analysis, importance.	2) Apprise the students of the methods of delivery of any presentation along with the different styles of starting a ppt.	
Unit V Soft Skills-III	1) Make the students aware of the importance of listening and negotiating in communication.	
Listening Skills: Importance, barriers to effective listening, approaches, being better listeners. Negotiation Skills: Importance, approaches,		5
preparations, role plays (Laboratory component)		
	Total	30

Textbooks:

- Technical Communication by Meenakshi Raman and Sangeeta Sharma- Oxford University Press
- Professional communication by R.P. Singh –Oxford
- Business communication by M.K. Sehgal and Vandana Khetrapal-Excel books
- Technical communication by Malti Agarwal- Krishna Educational

B.E. /B.Tech in Computer Science & Business Systems

Semester 1


Business Communication & Value Science - I

TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Lectures: 3 Hr./Week	Semester Examination: 50 marks	4
Tutorials: 0 Hr. / Week	Continuous Assessment: Yes	
Lab: 2-4 Hrs. / Week	Term Work: 50 marks	

Course ID:

1.6 (Year 1 Semester 1)

		Leadersh	ip Oriented Learning (LOL)	
Nature of Co	urse	Behavioral		
Pre requisite	S	Basic Knowled	ge of high school English	
Course Object	ctives:			
1	Unde	stand what life skills are	and their importance in leading a happy and well-a	djusted life
2	Moti	te students to look wit	hin and create a better version of self	
3	Intro	uce them to key concep	ts of values, life skills and business communication	
Course Outco	omes:			
Upon comple	etion of th	course, students shall	have ability to	
C1.6.1	Reco	nize the need for life ski	lls and values	[U]
C1.6.2	Reco	nize own strengths and	opportunities	[U]
C1.6.3	Apply	he life skills to differen	t situations	[AP]
C1.6.4	Unde	stand the basic tenets o	f communication	[U]
C1.6.5	Apply	he basic communicatio	n practices in different types of communication	[AP]
Course Conte	ents:			
•	Overvie	of the course with imm	nersion activity	
•	Overvie	of biz communication		
•		eness, confidence and		
•	Essentia	of Business communic	ation	

Semester 1

C1.6.3	Apply	Group Assignment – community service	5			
C1.6.4	Understand	Group activities	3			
C1.6.5	Apply	Record a conversation	3			
	Summative	Assessment based on End Semester Project				
Bloom's Level	Bloom's Level					
Understand	Understand Paper					
Apply						
Analyse						

Lesson Plan

TATA CONSULTANCY SERVICES

Unit No	Objective	Bloom's Level	Content	Type of Class	Duration
1	Recognize the need for life	Understand	Overview of LOL (include activity on introducing self)	Lecture & reflection	1 hour
	skills and values		Class activity – presentation on favorite cricket captain in IPL and the skills and values they demonstrate	Activity	1 hour
			Self-work with immersion – interview a maid, watchman, sweeper, cab driver, beggar and narrate what you think are the values that drive them	Immersion activity	2 hours
			Overview of business communication	Lecture with videos	1 hour
			Activity : Write a newspaper report on an IPL match	Class activity with 3 iterations - Formative Evaluation	1 hour
			Activity: Record a conversation between a celebrity and an interviewer	Class activity with 3 iterations - Formative Evaluation	1 hour

B.E. /B.Tech in Computer Science & Business Systems

Semester 1

Unit	Objective	Bloom's	Content	Type of	Duration
No		Level	Quiz Time	Class Summative	30 mins
			Quiz Time	Evaluation	50 111115
				for Unit	
	Recognize own	Understand	Self-awareness – identity, body	Anubhaab	4 hours
	strengths and opportunities		awareness, stress management	Activities	
				(Please	
				conduct at least one	
				activity per	
				week and	
				include the	
				Meditation	
				session in it)	
2	Understand the	Understand	Essential Grammar – I: Refresher	Lecture	1 hour
	basic tenets of		on <u>Parts of Speech</u> – Listen to an	with audio	
	communication		audio clip and note down the	and video	
	Unit name: Be At		different parts of speech followed by discussion		
	Ease (BAE) (in		Tenses: Applications of tenses in		
	Millennial lingo it		Functional Grammar – Take a		
	means Before		quiz and then discuss		
	Anyone Else)				
	, ,		Sentence formation (general &	Lecture	1 hour
			Technical), Common errors,	with	
			Voices. Show sequence from film	video/audio	
			where a character uses wrong		
			sentence structure (e.g. Zindagi		
			Na Milegi Dobara where the		
			characters use 'the' before every word)		
			Communication Skills: Overview		
			of Communication Skills		
			Barriers of communication,		
			Effective communication		
					1 hour

B.E. /B.Tech in Computer Science & Business Systems

Semester 1

Unit No	Objective	Bloom's Level	Content	Type of Class	Duration
NO		Level			1 hour
			Types of communication- verbal	Activity based	THOUL
			and non – verbal – Role-play		
			based learning	learning	
			based learning		
			Importance of Questioning		
			Listening Chilles Low of notions	Activity	1 hour
			Listening Skills: Law of nature-	based	
			Importance of listening skills,	learning	
			Difference between listening and		
			hearing, Types of listening.		
	Recognize own	Understand	Expressing self, connecting with	Anubhaab	4 hours
	strengths and		emotions, visualizing and	Activities	
	opportunities		experiencing purpose		
				(Please	
				conduct at	
				least one	
				activity per	
				week and include the	
				Meditation	
				session in it)	
	Apply the basic	Apply	Activity: Skit based on	Formative	4 hours
	communication		communication skills	Evaluation	
	practices in		Evaluation on Listening skills –	Formative	30 mins
	different types of		listen to recording and answer	Evaluation	
	communication		questions based on them		
3	Understand the	Understand	Email writing: Formal and	Activity	1 hour
	basic tenets of		informal emails, activity	based	
	communication			learning	
	Talk Mail Write		Verbal communication:	Audio and	30
	(TMW) - In		Pronunciation, clarity of speech	video based	minutes
	Millennial it			learning	
	means That		Vocabulary Enrichment:	Activity	1 hour
	Moment When		Exposure to words from General	based	
			Service List (GSL) by West,	learning	
			Academic word list (AWL)	(Group	
			technical specific terms related	Discussion)	
			to the field of technology,	Flipped	
			phrases, idioms, significant	classroom	

Unit No	Objective	Bloom's Level	Content	Type of Class	Duration
			abbreviations formal business vocabulary – Read Economic Times, Reader's Digest, National Geographic and take part in a GD, using the words you learnt/liked from the articles. Group discussion using words learnt	where students will study words before coming to class	
			Practice: Toastmaster style Table Topics speech with evaluation Written Communication: Summary writing, story writing	Activity based learning Activity based	2 hours over 2/3 days 1 hour
			Build your CV – start writing your comprehensive CV including every achievement in your life, no format, no page limit	learning Formative Evaluation	30 minutes
	Apply the basic communication practices in different types of communication	Apply	Project: Create a podcast on a topic that will interest college students	Formative Evaluation	1 hour
	Recognize own strengths and opportunities	Understand	Life skill: Stress management, working with rhythm and balance, colours, and teamwork	Anubhaab Activities (Please conduct at least one activity per week and include the Meditation session in it)	4 hours
	Apply the basic communication practices in different types of communication	Apply	Project: Create a musical using the learnings from unit	Formative Evaluation	2 hours

Unit No	Objective	Bloom's Level	Content	Type of Class	Duration
4	Unit 4 Recognize the need for life skills and values Unit name: Realities of Facing Life (ROFL)	Understand	Understanding Life Skills: Movie based learning – Pursuit of Happyness. What are the skills and values you can identify, what can you relate to?	Interactive learning	3 hours
			Introduction to life skills What are the critical life skills	Activity and Video	1 hour
			Multiple Intelligences Embracing diversity – Activity on appreciation of diversity	Video and activity based	1 hour
	Apply the life skills to different situations	Apply	Life skill: Community service – work with an NGO and make a presentation	Field work: Formative Evaluation	10 hours
			Life skill: Join a trek – Values to be learned: Leadership, teamwork, dealing with ambiguity, managing stress, motivating people, creativity, result orientation	Field work: Formative Evaluation	12 hours
			I	TOTAL	65 hours
	Summative Evaluation	Bloom's Level	Type of Assessment	Marks	Total
		Understand	Knowledge Test	20 marks	50 marks
		Apply Apply	Project (to be evaluated by TCS) Group discussion (to be evaluated by TCS)	20 marks 10 marks	

Semester 2

Semester II

BUSINESS COMMUNICATION & VALUE SCIENCE – II

TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Theory: 3 Hrs./Week	Semester Examination: 50 marks	<mark>4</mark>
Practical: 7 Hrs. / Week	Continuous Assessment: Yes	
Lab: 7 Hrs. / Week	Term Work: 50 marks	

TATA

Semester 2

Course ID:

1.6 (Year 1 Semester 2)

		Leadership Oriented Learning (LOL)	
Nature of Cou		Debavieral	
		Behavioral	
Pre requisites		Basic Knowledge of English (verbal and written) Completion of all units from Semester 1	
Course Objec	tives:		
1 Develop effective writing, reading, presentation and group discussion skills.			
2	Help studen	ts identify personality traits and evolve as a better team player.	
3	Introduce th a) Morality b) Behavior c) Diversity		
	tion of the cour	rse, students shall have ability to:	
Jpon comple	tion of the cour	rse, students shall have ability to: tools of structured written communication	[U]
Jpon comple	tion of the cour	rse, students shall have ability to:	[U] [AP]
Jpon comple	Understand Use tools of	rse, students shall have ability to: tools of structured written communication	
Jpon comple C2.6.1 C2.6.2	tion of the cour Understand Use tools of Use electror	rse, students shall have ability to: tools of structured written communication structured written communication	[AP]
C2.6.1 C2.6.2 C2.6.3	tion of the cour Understand Use tools of Use electror Develop ma cause	rse, students shall have ability to: tools of structured written communication structured written communication nic/social media to share concepts and ideas	[AP] [AP]
C2.6.1 C2.6.2 C2.6.3 C2.6.4	tion of the cour Understand Use tools of Use electror Develop ma cause Understand	rse, students shall have ability to: tools of structured written communication structured written communication nic/social media to share concepts and ideas terials to create an identity for an organization dedicated to a social	[AP] [AP] [C]
C2.6.1 C2.6.2 C2.6.3 C2.6.4 C2.6.5	tion of the cour Understand Use tools of Use electror Develop ma cause Understand Apply effect	rse, students shall have ability to: tools of structured written communication structured written communication nic/social media to share concepts and ideas terials to create an identity for an organization dedicated to a social the basics of presentation	[AP] [AP] [C] [U]
Jpon comple C2.6.1 C2.6.2 C2.6.3 C2.6.4 C2.6.5 C2.6.6	tion of the cour Understand Use tools of Use electror Develop ma cause Understand Apply effect Assess prese	rse, students shall have ability to: tools of structured written communication structured written communication nic/social media to share concepts and ideas terials to create an identity for an organization dedicated to a social the basics of presentation tive techniques to make presentations.	[AP] [AP] [C] [U] [AP]
C2.6.1 C2.6.2 C2.6.3 C2.6.4 C2.6.5 C2.6.6 C2.6.7	tion of the cour Understand Use tools of Use electror Develop ma cause Understand Apply effect Assess prese Understand	rse, students shall have ability to: tools of structured written communication structured written communication nic/social media to share concepts and ideas iterials to create an identity for an organization dedicated to a social the basics of presentation tive techniques to make presentations. entations based on given criteria	[AP] [AP] [C] [U] [AP] [E]
C2.6.1 C2.6.2 C2.6.3 C2.6.4 C2.6.5 C2.6.7 C2.6.8	tion of the cour Understand Use tools of Use electron Develop ma cause Understand Apply effect Assess prese Understand Apply the ba	rse, students shall have ability to: tools of structured written communication structured written communication nic/social media to share concepts and ideas terials to create an identity for an organization dedicated to a social the basics of presentation tive techniques to make presentations. entations based on given criteria tools for quick reading.	[AP] [AP] [C] [U] [AP] [E] [U]

TATA

Semester 2

C2.6.12	Understand the basic concepts of Morality and Diversity	[U]
C2.6.13	Create communication material to share concepts and ideas	[C]
C2.6.14	Argue on a topic based on morality and diversity	[E]
C2.6.15	Articulate opinions on a topic with the objective of influencing others	[C]
C2.6.16	Organize an event to generate awareness and get support for a cause	[C]

Course Contents:

- Identification of common errors in written communication and ways of rectification
- Understanding speed reading techniques Skimming and Scanning
- Application of reading and writing skills
- Analyzing personality traits and team player style
- Understanding the concepts of Morality, Diversity and Inclusion
- Application of these concepts

TATA CONSULTANCY SERVICES

- Creation of communication material
- Experiencing diversity and organizing events to support inclusion
- Assignment Assimilation of concepts and present them effectively

	Total Hours:	61
Text Books:		
	There are no prescribed texts for Semester 2 – there will be handouts and reshared.	eference links
Reference Books:		
1	Guiding Souls : Dialogues on the purpose of life; Dr. A.P.J Abdul Kalam ;Pub 2005; Co-authorArun Tiwari	olishing Year-
2	The Family and the Nation; Dr. A.P.J Abdul Kalam; Publishing year: 2015; Co author: Acharya Mahapragya	0-
3	The Scientific India: A twenty First Century Guide to the World around Us; Abdul Kalam; Publishing year: 2011; Co-author- Y.S.Rajan	Dr. A.P.J
4	Forge Your Future: Candid, Forthright, Inspiring ; Dr. A.P.J Abdul Kalam; Pu year: 2014	blishing
5	Abundance: The Future is Better Than You Think; Peter H. Diamandis and S Kotler; Published: 21 Feb, 2012; Publisher: Free Press	Steven
6	Start With Why: How Great Leaders Inspire Everyone to Take Action; Simo Published: 6 October 2011; Publisher: Penguin	n Sinek;

7	-	MC: Principles and Practice; Sandra Moriarty, Nancy D. M hed: 15 June 2016; Publisher: Pearson Education India	Mitchell, Williar	
Web References:				
1	ETHICS FUNDAM	ENTALS AND APPROACHES TO ETHICS		
	https://www.eols	ss.net/Sample-Chapters/C14/E1-37-01-00.pdf		
2		Making Ethical Decisions		
		wn.edu/academics/science-and-technology-studies/fram	ework-making-	
2	ethical-decision			
3		aches to Ethical Decision- hthrop.edu/meelerd/docs/rolos/5 Ethical Approaches.pc	If	
Online Resources:	<u>intp:///douty.wir</u>		<u>a</u>	
1	https://youtu.b	e/CsaTslhSDI		
_				
2	https://m.yout	ube.com/watch?feature=youtu.be&v=IIKvV8 T95M		
	<u> </u>	· · · · · ·		
3	https://m.voutu	ube.com/watch?feature=youtu.be&v=e80BbX05D7Y		
-				
4	4 https://m.youtube.com/watch?v=dT_D68RJ5T8&feature=youtu.be			
-	<u>Inteps.//Integoute</u>			
5	https://m.voutu	ube.com/watch?v=7sLLEdBgYYY&feature=youtu.be		
J	<u>Inteps.//Integoute</u>			
Assessment Methods	& Levels (based	on Bloom's Taxonomy)		
Formative assessment		-		
	Bloom's			
Course Outcome	Level	Assessment Component	Marks	
C1.6.1	Understand	Immersion (interview)	5	
			-	
C1.6.2	Understand	Create CV	4	
C1.6.3	Apply	Group Assignment- Form an NGO	5	
C1.6.4	Understand	Group activities	3	
C1.6.5	Create	Create and present a street play to articulate and	3	
		amplify the social cause.		
	Summative	Assessment based on End Semester Project		
Bloom's Level				
	1		50	
Understand Apply	_			

Semester 2

Analyze Written Assessment, project and group discussion

Lesson Plan

Unit	Objective	Bloom's Level	Content	Type of Class	Duration
<u>No</u>			Icebreaker. 1) Participate in 'Join Hands Movement'. Individual identification of social issues.2) Each Individual chooses one particular social issue which they would like to address. 3) Class to be divided in teams for the entire semester. All activities to be done in teams and the grades, credit points will be captured in the leader board in the class room.4) Theory to introduce the participant Slam book to be used for capturing individual learning points and observations.	Group discussion, Practical	60 Minutes
1	Understand tools of structured written communication	Understand	Research on the social cause each group will work for.	Practical (practical)	90 Minutes
1	Use tools of structured written communication	Understand	Class discussion- Good and Bad Writing. Common errors, punctuation rules, use of words.	PPT, Theory and Practical	90 Minutes
			Group Practical – As a group, they will work on the social		

Unit No	Objective	Bloom's Level	Content	Type of Class	Duration
1			issue identified by them. Research, read and generate a report based on the findings. (Apply the learning and recap from the session)	Formative evaluation	70 Minutes
1	Create communication material to share concepts and ideas	Create	Practical: Plan and design an E Magazine. Apply and assimilate the knowledge gathered from Sem-1 till date. Share objective & guideline. All members to contribute an article to the magazine, trainer to evaluate the content.	Practical (Practical)	120 Minutes
1	Understand tools for Lucid writing	Understand	Lucid Writing: Encourage the students to go through the links given about Catherine Morris and Joanie Mcmahon's writing techniques.	Theory and Discussion	30 mins
1	Create communication material to share concepts and ideas	Create	Create the magazine	Practical (Lab)	90 Minutes
1		Understand	SATORI – Participants share the personal take away acquired from GD, writing and reading skills activities captured in their handbook. Share the most important learning points from the activities done so far and how that learning has brought a change.	Theory/Discussion	60 Minutes

TATA

Unit	Objective	Bloom's Level	Content	Type of Class	Duration
No					
1	Use electronic/social media to share concepts and ideas	Apply	Launching an E Magazine.	Practical (Lab)	120 Minutes
1			Quiz Time	Summative Evaluation for Unit	60 Minutes
Unit 2	2				
2	Develop materials to create an identity for an organization dedicated to a social cause	Create	Each group will form an NGO. Create Vision, Mission, Value statement, tagline and Design a logo.	Practical and Practical	90 Minutes
2	Understand the basics of presentation	Understand	Introduction to basic presentation skills & ORAI app	Theory and video	60 Minutes
2	Apply effective techniques to make presentations.	Apply	Groups to present their NGOs. Apply the learning gathered from session 2. Presentation to be recorded by the groups. feedback from the audience/ Professor	Formative evaluation	60 Minutes
2	Assess presentation based on given criteria	Evaluate	Group to come back and share their findings from the recording. Post work- individual write up to be written and evaluated for the E- magazine	Sharing of learning, written Practical and formative evaluation	60 Minutes & 60 Minutes
2	Create communication material to	Create	Prepare and publish the Second episode of the E Magazine.		

TATA

Unit No	Objective	Bloom's Level	Content	Type of Class	Duration
	share concepts and ideas Use electronic/social media to share concepts and ideas	Apply		Practical (Lab)	120 minutes
2	Understand the tools for speed reading. Apply the basic concepts of speed reading, skimming and scanning.	Understand Apply	Speed Reading session: Introduction to skimming and scanning; practice the same.	Theory and Practical	30 Minutes
2		Understand	SATORI – Join the dots- Participants to connect their learning gathered from AIP Unit-2 with their existing curriculum	Share the most important learning points	60 Minutes
2	2		Quiz Time	Summative Evaluation for Unit	60 Minutes
Unit 3	Develop materials to create an identity for an organization dedicated to a social cause	Create	Ad campaign- Brain storming session- Students to discuss and explore the means of articulating and amplifying the	Discussion	60 Minutes

Unit No	Objective	Bloom's Level	Content	Type of Class	Duration
			social issue their NGOs are working for.		
3	Create communication material to share concepts and ideas.	Create	Design a skit- a) write the script articulating the message of their respective NGOs. Read out the script. (Skit time- 5 minutes). Feedback of Theory.	Practical based learning. Formative evaluation by Theory	a) 30 Minutes b) 60 Minutes
3	Use electronic/social media to share concepts and ideas	Apply Apply	Promote the play through a social media and gather your audience. Enact the play. Capture the numbers of likes and reviews. Theory to assign grades to individual team.	Practical based learning Formative Evaluation	Lab Time: 90 Minutes Class Time:60 Minutes
3	Identify individual personality types and role in a team.	Understand	(1) Theory to find out from the participants their views, observations and experiences of working in a team(2) Intro of Dr. Meredith Belbin and his research on team work and how individuals contribute.	Discussion and Theory	60 Minutes
3	Identify individual personality types and role in a team.	Understand	Cont. (3) Belbin's 8 Team Roles and Lindgren's Big 5 personality traits.(4) Belbin's 8 team player styles	Practical based learning followed by a presentation	40 Minutes
	Identify individual				

Unit No	Objective	Bloom's Level	Content	Type of Class	Duration
3	personality types and role in a team.	Understand	(1) Team Falcon Practical to identify individual personality traits with Belbin's 8 team player styles	Practical based learning followed by a presentation.	(1 &2) 40 Minutes
3	Recognize the concepts of outward behavior and internal behavior	Understand	(2) Similar personality types to form groups (3) Groups present their traits.	Presentation	(3) 60 minutes
3	Create communication material to share concepts and ideas. Use the electronic/social media to share concepts and ideas	Create Apply	Prepare and publish the third episode of the E Magazine.	Practical	60 Minutes
3		Understand Understand	SATORI – (join the dots with participants personal life) Participants share the personal take away acquired from working in teams, GD, learning about presentations, presenting their NGOs	Share the most important learning points from the activities done so far. Participants talk about the changes they perceive in themselves	60 Minutes
3			Quiz Time	Summative Evaluation for Unit	60 Minutes
Unit 4	1		1		
	Understand the basic concepts		Ten minutes of your time – a short film on diversity. Play		

Unit	Objective	Bloom's Level	Content	Type of Class	Duration
No 4	of Morality and Diversity	Understand	the video (link to be attached in the FG)	Video & discussion	30 Minutes
4	Understand the basic concepts of Morality and Diversity	Understand	Discuss key take away of the film. Theory to connect the key take away of the film to the concept of empathy.	Practical	30 Minutes
4	Understand the basic concepts of Morality and Diversity	Understand	Touch the target (Blind man) - Debriefing of the Practical. Film: "The fish and I" by Babak Habibifar" (1.37mins)	Practical and discussion	60 Minutes
4	Create communication material to share concepts.	Create	Groups to create a story – 10 minutes of a person's life affected by the social issue groups are working on. Narrate the story in first person. Feedbacks to be shared by the other groups.	Practical, sharing and Practical	120 Minutes
4	Understand the basic concepts of Morality and Diversity	Understand	Research on a book, incident or film based on the topic of your respective NGO	Research and written Practical	120 Minutes
4	Create communication material to share concepts.	Create	Write a review in a blog on the topics they are covering in their research. Theory will give grades to each team.	Written Practical and Formative Evaluation	60 Minutes

Unit No	Objective	Bloom's Level	Content	Type of Class	Duration
4	Understand the basic concepts of Morality and Diversity	Understand	Session on Diversity & Inclusion- Different forms of Diversity in our society.	PPT, Theory, discussion	60 Minutes
4	Create communication material to share concepts.	Create	Teams to video record interviews of people from diverse groups (Ask 5 questions). Share the recordings in FB	Practical	120 Minutes
4	Argue on a topic based on morality and diversity	Evaluate	Debate on the topic of diversity with an angle of ethics, morality and respect for individual (In the presence of an external moderator). Groups will be graded by the professor.	Practical and formative evaluation	60 Minutes
4	Articulate opinions on a topic with the objective of influencing others	Create	Prepared speech- Every student will narrate the challenges faced by a member of a diverse group in 4 minutes (speech in first person). Theory to give feedback to each student.	Practical and formative Evaluation	90 Minutes
4	Understand the basic concepts of Morality and Diversity	Understand	Discussion on TCS values, Respect for Individual and Integrity.	PPT, Theory, Practical and discussion	60 Minutes
4	Create communication material to share concepts and ideas.	Create Apply	Prepare and publish the final episode of the E Magazine.	Practical	120 Minutes

Unit No	Objective	Bloom's Level	Content	Type of Class	Duration
	Use the electronic/social media to share concepts and ideas				
4		Understand	SATORI –Participants share the personal take away acquired from working in teams, GD, learning about presentations and understanding diversity inclusion.	Discussion	60 Minutes
4	Use tools of structured written communication	Apply	Revisit your resume Include your recent achievements in your resume.	Submit it to the Professor	Lab time-30 Minutes
4			Quiz Time	Summative Evaluation for Unit	60 Minutes
4	Organize an event to generate awareness and get support for a cause	Create	 Project- 1) Each team to look for an NGO/ social group in the city which is working on the issue their college group is supporting. 2) Spend a day with the NGO/ social group to understand exactly how they work and the challenges they face. 3) Render voluntary service to the group for one day 4) Invite the NGO/ social group to address their university students for couple of hours. Plan the entire event, decide a 	Field work: Formative Evaluation	7 Hours

Unit	Objective	Bloom's Level	Content	Type of Class	Duration
No					
			suitable venue in the		
			university, gather audience,		
			invite faculty members etc.		
			(they need to get their plan		
			ratified their professor).		
			Outcome Host an		
			interactive session with the		
			NGO spokesperson		
			5) The groups to present		
			their experience of a day		
			with the NGO and inspire		
			students to work for the		
			cause.		
TOTAL	-		· · · · ·		61 hours
	Assessment	Understand	Written Assessment of 20		
			marks		
		Create	Project of 20 marks (E-		
			Magazine 4 editions)		
		Analyze, Create	Focus Group Discussion 10		
			marks		